58
Views
0
CrossRef citations to date
0
Altmetric
Articles

Cubic spline approximation based on half-step discretization for 2D quasilinear elliptic equations

ORCID Icon, ORCID Icon & ORCID Icon

References

  • D. M. Young and J. H. Dauwalder, “Discrete representation of partial differential equations,” in Errors in Digital Computation, L. Rall, Ed. New York: Academic Press, 1965, p. 181.
  • R. E. Lynch and J. R. Rice, “The Hodie method and its performance for solving elliptic partial differential equations,” in Recent Advances in Numerical Analysis, C. De Boor and G. H. Golub, Eds. New York: Academic Press, 1978, pp. 143–175.
  • R. E. Lynch and J. R. Rice, “High accuracy finite difference approximation to solutions of elliptic partial differential equations,” Proc. Natl. Acad. Sci. U. S. A., vol. 75, pp. 2541–2572, 1978. DOI: 10.1073/pnas.75.6.2541.
  • R. F. Boisvert, “Families of high order accurate discretization of some elliptic problems,” SIAM J. Sci. Stat. Comput, vol. 2, no. 3, pp. 268–285, 1981. DOI: 10.1137/0902022.
  • I. Yavneh, “Analysis of fourth-order compact scheme for convection diffusion equation,” J. Comput. Phys., vol. 133, no. 2, pp. 361–373, 1997. DOI: 10.1006/jcph.1997.5659.
  • M. K. Jain, R. K. Jain, and R. K. Mohanty, “A fourth order difference method for elliptic equations with nonlinear first derivative terms,” Numer. Methods Partial Differ. Eq., vol. 5, no. 2, pp. 87–95, 1989. DOI: 10.1002/num.1690050203.
  • M. K. Jain, R. K. Jain, and R. K. Mohanty, “Fourth order difference methods for the system of 2D nonlinear elliptic partial differential equations,” Numer. Methods Partial Differ. Eq., vol. 7, no. 3, pp. 227–244, 1991. DOI: 10.1002/num.1690070303.
  • R. K. Mohanty, “Order h4 difference methods for a class of singular two space elliptic boundary value problems,” J. Comp. Appl. Math., vol. 81, no. 2, pp. 229–247, 1997. DOI: 10.1016/S0377-0427(97)00058-7.
  • R. K. Mohanty and S. Singh, “A new fourth order discretization for singularly perturbed two dimensional non linear elliptic boundary value problems,” Appl. Math. Comput., vol. 175, no. 2, pp. 1400–1414, 2006. DOI: 10.1016/j.amc.2005.08.023.
  • R. K. Mohanty, S. Karaa, and U. Arora, “Fourth order nine point unequal mesh discretization for the solution of 2-D nonlinear elliptic partial differential equations,” Neural Parallel Sci. Comput., vol. 14, pp. 453–470, 2006.
  • J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The Theory of Splines and Their Applications. New York: Academic Press, 1967.
  • W. G. Bickley, “Piecewise cubic interpolation and two point boundary value problems,” Comput. J., vol. 11, no. 2, pp. 206–208, 1968. DOI: 10.1093/comjnl/11.2.206.
  • D. J. Fyfe, “The use of cubic splines in the solution of two point boundary value problems,” Comput. J., vol. 12, no. 2, pp. 188–192, 1969. DOI: 10.1093/comjnl/12.2.188.
  • E. L. Albasiny and W. D. Hoskins, “Cubic spline solution of boundary value problem,” Comput. J., vol. 12, no. 2, pp. 151–153, 1969. DOI: 10.1093/comjnl/12.2.151.
  • E. L. Albasiny and W. D. Hoskins, “Increased accuracy cubic spline solutions to two point boundary value problems,” IMA J. Appl. Math., vol. 9, no. 1, pp. 47–55, 1972. DOI: 10.1093/imamat/9.1.47.
  • P. M. Prenter, Splines and Variational Methods. New York: Wiley, 1975.
  • R. P. Tewarson, “On the use splines for the numerical solution of non-linear two-point boundary value problems,” BIT, vol. 20, no. 2, pp. 223–232, 1980. DOI: 10.1007/BF01933195.
  • M. K. Jain and T. Aziz, “Cubic spline solution of two point boundary value problems with significant first derivatives,” Comput. Meth. Appl. Mech. Engg., vol. 39, no. 1, pp. 83–91, 1983. DOI: 10.1016/0045-7825(83)90075-0.
  • E. A. Al-Said, “Spline methods for solving a system of second order boundary value problems,” Int. J. Comput. Math., vol. 70, no. 4, pp. 717–727, 1999. DOI: 10.1080/00207169908804784.
  • E. A. Al-Said, “The use of cubic splines in the numerical solution of a system of second-order boundary value problem,” Comput. Math. Appl., vol. 42, no. 6–7, pp. 861–869, 2001. DOI: 10.1016/S0898-1221(01)00204-8.
  • R. K. Mohanty and D. J. Evans, “A fourth-order accurate cubic spline alternating group explicit method for nonlinear singular two-point boundary value problems,” Int. J. Comput. Math., vol. 80, no. 4, pp. 479–492, 2003. DOI: 10.1080/0020716021000009219.
  • R. K. Mohanty, P. L. Sachdev, and N. Jha, “An O(h4) accurate cubic spline TAGE method for singular two point boundary value problems,” Appl. Math. Comput., vol. 158, pp. 853–868, 2004.
  • A. Khan, “Parametric cubic spline solution of two point boundary value problems,” Appl. Math. Comput., vol. 154, no. 1, pp. 175–182, 2004. DOI: 10.1016/S0096-3003(03)00701-X.
  • A. Khan, I. Khan, and T. Aziz, “A survey on parametric spline function approximation,” Appl. Math. Comput., vol. 171, no. 2, pp. 983–1003, 2005. DOI: 10.1016/j.amc.2005.01.112.
  • J. Rashidinia, R. Mohammadi, and M. Ghasemi, “Cubic spline solution of singularly perturbed boundary value problems with significant first derivatives,” Appl. Math. Comput., vol. 190, no. 2, pp. 1762–1766, 2007. DOI: 10.1016/j.amc.2007.02.050.
  • J. Rashidinia, R. Mohammadi, and R. Jalilian, “Spline solution of nonlinear singular boundary value problems,” Int. J. Comput. Math., vol. 85, no. 1, pp. 39–52, 2008. DOI: 10.1080/00207160701293048.
  • E. N. Houstis, J. R. Rice, and E. A. Vavalis, “Convergence of O(h4) cubic spline collocation methods for elliptic partial differential equations,” SIAM J. Numer. Anal., vol. 25, no. 1, pp. 54–74, 1988. DOI: 10.1137/0725006.
  • A. Hadjidimos, E. N. Houstis, J. R. Rice, and E. A. Vavalis, “Iterative line cubic spline collocation methods for elliptic partial differential equations in several dimensions,” SIAM J. Sci. Comput., vol. 14, no. 3, pp. 715–734, 1993. DOI: 10.1137/0914045.
  • R. K. Mohanty and S. Dey, “A new finite difference discretization of order four for (∂u/∂n) for two dimensional quasi-linear elliptic boundary value problems,” Int. J. Comput. Math., vol. 76, no. 4, pp. 505–516, 2001. DOI: 10.1080/00207160108805043.
  • R. K. Mohanty and U. Arora, “A new discretization method of order four for the numerical solution of one space dimensional second order quasi-linear hyperbolic equation,” Int. J. Math. Edu. Sci. Technol., vol. 33, no. 6, pp. 829–838, 2002. DOI: 10.1080/00207390210162465.
  • R. K. Mohanty and M. K. Jain, “High accuracy cubic spline alternating group explicit methods for 1D quasi-linear parabolic equations,” Int. J. Comput. Math., vol. 86, no. 9, pp. 1556–1571, 2009. DOI: 10.1080/00207160801923049.
  • R. K. Mohanty and N. Setia, “A new fourth order compact off-step discretization for the system of 2D non-linear elliptic partial differential equations,” E. Asian J. Appl. Math., vol. 2, no. 1, pp. 59–82, 2012. DOI: 10.4208/eajam.291211.080212a.
  • R. K. Mohanty and N. Setia, “A new compact high order off-step discretization for the system of 2D quasi-linear elliptic partial differential equations,” Adv. Differ. Equ., vol. 2013, no. 1, pp. 223, 2013. DOI: 10.1186/1687-1847-2013-223.
  • R. K. Mohanty, M. K. Jain, and D. Dhall, “High accuracy cubic spline approximation for two dimensional quasi-linear elliptic boundary value problems,” appl. Math. Modell., vol. 37, no. 1–2, pp. 155–171, 2013. DOI: 10.1016/j.apm.2012.02.020.
  • R. K. Mohanty and R. Kumar, “A new fast algorithm based on half-step discretization for one space dimensional quasilinear hyperbolic equations,” Appl. Math. Comput., vol. 244, pp. 624–641, 2014. DOI: 10.1016/j.amc.2014.07.020.
  • R. K. Mohanty and R. Kumar, “A novel numerical algorithm of Numerov type for 2D quasilinear elliptic boundary value problems,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 15, no. 6, pp. 473–489, 2014. DOI: 10.1080/15502287.2014.934488.
  • R. K. Mohanty and G. Khurana, “A new high accuracy cubic spline method based on half-step discretization for the system of 1D non-linear wave equations,” EC, vol. 36, no. 3, pp. 930–957, 2019. DOI: 10.1108/EC-04-2018-0194.
  • R. K. Mohanty, G. Manchanda, and A. Khan, “Compact half-step approximation in exponential form for 2D second order quasi-linear elliptic partial differential equations,” J. Difference Equ. Appl., vol. 25, no. 5, pp. 716–749, 2019. DOI: 10.1080/10236198.2019.1624737.
  • R. K. Mohanty and S. Sharma, “A new two-level implicit scheme based on cubic spline approximations for the 1D time-dependent quasilinear biharmonic problems,” Eng. Comput. DOI: 10.1007/s00366-019-00778-1.
  • R. K. Mohanty and S. Sharma, “A new high accuracy method based on off-step cubic polynomial approximations for the solution of coupled Burgers’ equations and Burgers-Huxley equation,” Eng. Comput. DOI: 10.1007/s00366-020-00982-4.
  • I. Priyadarshini and R. K. Mohanty, “High resolution compact numerical method for the system of 2D quasilinear elliptic boundary value problems and the solution of normal derivatives on an irrational domain with engineering applications,” Eng. Comput. DOI: 10.1007/s00366-020-01150-4.
  • R. C. Mittal and A. Tripathi, “A collocation method for numerical solutions of coupled Burgers’ equations,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 15, no. 5, pp. 457–471, 2014. DOI: 10.1080/15502287.2014.929194.
  • R. C. Mittal and A. Tripathi, “Numerical solutions of symmetric regularized long wave equations using collocation of cubic B-splines finite element,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 16, no. 2, pp. 142–150, 2015. DOI: 10.1080/15502287.2015.1011812.
  • R. C. Mittal and A. Tripathi, “Numerical solutions of two-dimensional Burgers’ equations using modified bi-cubic B-spline finite elements,” Eng. Comput. vol. 32, no. 5, pp. 1275–1306, 2015. DOI: 10.1108/EC-04-2014-0067.
  • R. C. Mittal and A. Tripathi, “Numerical solutions of generalized Burgers–Fisher and generalized Burgers–Huxley equations using collocation of cubic B-splines,” Int. J. Comput. Math., vol. 92, no. 5, pp. 1053–1077, 2015. DOI: 10.1080/00207160.2014.920834.
  • R. C. Mittal and A. Tripathi, “Numerical solutions of two-dimensional unsteady convection–diffusion problems using modified bi-cubic B-spline finite elements,” Int. J. Comput. Math., vol. 94, no. 1, pp. 1–21, 2017. DOI: 10.1080/00207160.2015.1085976.
  • C. T. Kelly, Iterative Methods for Linear and Non-Linear Equations. Philadelphia: SIAM Publications, 1995.
  • R. S. Varga, Matrix Iterative Analysis. New York: Springer, 2000.
  • Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Philadelphia: SIAM Publisher, 2003.
  • L. A. Hageman and D. M. Young, Applied Iterative Methods. New York: Dover Publication, 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.