188
Views
0
CrossRef citations to date
0
Altmetric
Articles

A Cartesian grid generation technique for 2-D non-Newtonian blood flow through a bileaflet mechanical heart valve

&

References

  • D. Silverthorn, W. Ober and C. Garrison, Human Physiology: An Integrated Approach, 5th edition, San Francisco, CA, USA: Benjamin Cummings, 2009.
  • I. C. Howard, E. a Patterson and a Yoxall, “On the opening mechanism of the aortic valve: some observations from simulations,” J. Med. Eng. Technol., vol. 27, no. 6, pp. 259–266, 2003. DOI: 10.1080/0309190031000096621.
  • R. I. Sergio, E. C. Lino and P. Ricardo, “A comparative computational study of blood flow through prosthetic heart valves using the finite element method,” J. Biomech., vol. 18, no. 2, pp. 97–115, 1985.
  • J. M. A. Stijnen, J. de Hart, P. H. M. Bovendeerd and F. N. van de Vosse, “Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves,” J. Fluids Struct., vol. 19, no. 6, pp. 835–850, 2004. DOI: 10.1016/j.jfluidstructs.2004.04.007.
  • J. Zamorano, P. Lancellotti, L. Pierard and P. Pibarot, Heart Valve Disease. Cham, Switzerland: Springer International Publishing, 2020.
  • H. Mohammadi and K. Mequanint, “Prosthetic aortic heart valves: modeling and design,” Med Eng. Phys., vol. 33, no. 2, pp. 131–147, 2011. DOI: 10.1016/j.medengphy.2010.09.017.
  • J. N. Mazumdar, Biofluid Mechanics. Singapore: World Scientific Publishing CE. PTE. Ltd, 2004.
  • R. Cheng, Y. G. Lai and K. B. Chandran, “Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics,” Ann. Biomed. Eng., vol. 32, no. 11, pp. 1471–1483, 2004. DOI: 10.1114/B:ABME.0000049032.51742.10.
  • M. H. Yacoub and J. J. M. Takkenberg, “Will heart valve tissue engineering change the world?,” Nat. Clin. Pract. Cardiovasc. Med., vol. 2, no. 2, pp. 60–61, 2005. DOI: 10.1038/ncpcardio0112.
  • Y. Abu-Omar and C. P. Ratnatunga, “Prosthetic heart valves,” Surgery, vol. 26, no. 12, pp. 496–500, 2008. DOI: 10.1016/j.mpsur.2008.09.011.
  • A. P. Yoganathan and F. Sotiropoulos, “Using CFD to examine the hemodynamics of artificial heart valves,” Bus. Briefing: US Cardiol., vol. 1, pp. 1–5, 2004.
  • J. Mazumdar and K. Thalassoudis, “A mathematical model for the study of flow through disc-type prosthetic heart valves,” Med. Biol. Eng. Comput., vol. 21, no. 4, pp. 400–409, 1983. DOI: 10.1007/BF02442626.
  • R. Pietrabissa, W. Marconi and R. Fumero, “Principle of operation, design criteria and fluid dynamics of a new bileaflet heart valve prosthesis,” Int. J. Artificial Organs, vol. 14, no. 7, pp. 430–434, 1991. DOI: 10.1177/039139889101400709.
  • M. Krafczyk, M. Cerrolaza, M. Schulz and E. Rank, “Analysis of 3D transient blood flow passing through an artificial aortic valve by lattice-boltzmann methods,” J. Biomech., vol. 31, no. 5, pp. 453–462, 1998. DOI: 10.1016/S0021-9290(98)00036-0.
  • K. Thalassoudis and J. Mazumdar, “Mathematical model for turbulent blood flow through a disk-type prosthetic heart valve,” Med. Biol. Eng. Comput., vol. 22, no. 6, pp. 529–536, 1984. DOI: 10.1007/BF02443866.
  • R. C. Choeng and N. K. Chang, “Analysis of blood flow interacted with leaflets in MHV in view of fluid-structure interaction,” J. Mech. Sci. Technol, vol. 15, no. 5, pp. 613–622, 2001.
  • A. P. Yoganathan, Z. He and S. C. Jones, “Fluid mechanics of heart valves,” Annu. Rev. Biomed. Eng., vol. 6, no. 1, pp. 331–362, 2004. DOI: 10.1146/annurev.bioeng.6.040803.140111.
  • A. P. Yoganathan, K. B. Chandran and F. Sotiropoulos, “Flow in prosthetic heart valves: state-of-the-art and future directions,” Ann. Biomed. Eng., vol. 33, no. 12, pp. 1689–1694, 2005. DOI: 10.1007/s10439-005-8759-z.
  • F. Sotiropoulos and I. Borazjani, “A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves,” Med. Biol. Eng. Comput., vol. 47, no. 3, pp. 245–256, 2009. DOI: 10.1007/s11517-009-0438-z.
  • F. Sotiropoulos, T. B. Le and A. Gilmanov, “Fluid mechanics of heart valves and their replacements,” Annu. Rev. Fluid Mech., vol. 48, no. 1, pp. 259–283, 2016. DOI: 10.1146/annurev-fluid-122414-034314.
  • G. B. Thurston, “ “Rheological parameters for the viscosity viscoelasticity and thixotropy of blood,” Biorheology, vol. 16, no. 3, pp. 149–162, 1979. DOI: 10.3233/bir-1979-16303.
  • K. Perktold and G. Rappitsch, “Mathematical modeling of arterial blood flow and correlation to atherosclerosis,” Technol. Health Care, vol. 3, no. 3, pp. 139–151, 1995. DOI: 10.3233/THC-1995-3301.
  • S. Chien, “Physiological and pathophysiological significance of hemorheology,” in Clinical Hemorheology. Developments in Cardiovascular Medicine, S. Chien, J. Dormandy, E. Ernst, A. Matrai (Eds). vol. 74. Dordrecht: Springer, 1987.
  • K. Perktold, M. Resch and H. Florian, “Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model,” J Biomech Eng, vol. 113, no. 4, pp. 464–475, 1991. DOI: 10.1115/1.2895428.
  • W. P. Walawender, T. Y. Chen and D. F. Cala, “An approximate Casson fluid model for tube flow of blood,” Biorheology, vol. 12, no. 2, pp. 111–119, 1975. DOI: 10.3233/bir-1975-12202.
  • V. N. Yurechko, R. V. Yurechko, L. M. Vil’danov and M. P. Etonov, “Two-lobed artificial cardiac valve with a common axis of rotation of lobes,” Biomed Eng, vol. 32, no. 5, pp. 272–282, 1998. DOI: 10.1007/BF02369103.
  • M. Thubrikar, The Aortic Valve. Boca Raton, FL, USA: CRC Press Inc., 1990,
  • H. Reul, A. Vahlbruch, M. Giersiepen, T. Schmitz-Rode, V. Hirtz and S. Effert, “The geometry of the aortic root in health, at valve disease and after valve replacement,” J. Biomech., vol. 23, no. 2, pp. 181–191, 1990. DOI: 10.1016/0021-9290(90)90351-3.
  • G. D. Tansley, R. J. Edwards and C. R. Gentle, “Role of computational fluid mechanics in the analysis of prosthetic heart valve flow,” Med. Biol. Eng. Comput., vol. 26, no. 2, pp. 175–185, 1988. DOI: 10.1007/BF02442261.
  • K. Perktold, E. Thurner and T. Kenner, “Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models,” Med. Biol. Eng. Comput., vol. 32, no. 1, pp. 19–26, 1994. DOI: 10.1007/BF02512474.
  • P. Neofytou, “Comparison of blood rheological models for physiological flow simulation,” Biorheology, vol. 41, no. 6, pp. 693–714, 2004.
  • E. W. Merril, “Rheology of blood,” Physiol. Rev., vol. 49, no. 4, pp. 863–888, 1969.
  • M. S. Carvalho and P. R. Souza Mendes, “Heat transfer in the non-Newtonian axisymmetric flow in the neighborhood of a sudden contraction,” J. Heat Transfer, vol. 114, no. 3, pp. 582–588, 1992. DOI: 10.1115/1.2911321.
  • P. J. Roache, Computational Fluid Dynamics. Albuquerque: Hermosa Publishers, 1985,
  • D. A. Anderson, J. C. Tannehill and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer. Philadelphia, PA, USA: Taylor & Francis, 1997.
  • J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Berlin: Springer-Verlag, 2002.
  • S. Abdallah, “Numerical solutions for the incompressible Navier-Stokes equations in primitive variables using a non-staggered grid,” J. Comput. Phys., vol. 70, no. 1, pp. 182–202, 1987. DOI: 10.1016/0021-9991(87)90008-8.
  • E. Sanmiguel-Rojas, J. Ortega-Casanova, C. d Pino and R. Fernandez-Feria, “A Cartesian grid finite-difference method for 2D incompressible viscous flows in irregular geometries,” J. Comput. Phys., vol. 204, no. 1, pp. 302–318, 2005. DOI: 10.1016/j.jcp.2004.10.010.
  • S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transfer, vol. 15, no. 10, pp. 1787–1806, 1972. DOI: 10.1016/0017-9310(72)90054-3.
  • Y. Jaluria and K. E. Torrance, Computational Heat Transfer. Washington. DC, USA: Hemisphere, 1986.
  • E. Papanicolaou and Y. Jaluria, “Mixed convection from an isolated heat source in a rectangular enclosure,” Numer. Heat Transfer, vol. 18, no. 4, pp. 427–461, 1991. DOI: 10.1080/10407789008944802.
  • F. T. Pinho and J. H. Whitelaw, “Flow of non-Newtonian fluids in a pipe,” J. Non-Newtonian Fluid Mech., vol. 34, no. 2, pp. 129–144, 1990. DOI: 10.1016/0377-0257(90)80015-R.
  • M. Jahandardoost, G. Fradet and H. Mohammadi, “Hemodynamic study of the elliptic St. Jude medical valve: a computational study,” Proc. Inst. Mech. Eng. H, vol. 230, no. 2, pp. 85–96, 2016. DOI: 10.1177/0954411915621341.
  • N. Mirkhani, M. R. Davoudi, P. Hanafizadeh, et al., “On-X heart valve prosthesis: numerical simulation of hemodynamic performance in accelerating systole,” Cardiovasc. Eng. Technol., vol. 7, no. 3, pp. 223–237, 2016. DOI: 10.1007/s13239-016-0265-y.
  • M. H. Kobayashi and J. C. F. Pereira, “A computational method for solving arbitrary two-dimensional physiological flows,” J. Biomech. Eng., vol. 116, no. 3, pp. 315–317, 1994. DOI: 10.1115/1.2895736.
  • M. E. Ralph and T. J. Pedley, “Viscous and inviscid flows in a channel with a moving indentation,” J. Fluid Mech., vol. 209, pp. 543–566, 1989. DOI: 10.1017/S0022112089003216.
  • K. Affeld, A. Ziemann and L. Goubergrits, “Flow in artificial heart valves and in cardiac assist devices,” presented at 9th Int. Conf. on Biomed. Eng., Singapore, 1997. pp. 30–34.
  • S. Hashimoto, H. Maeda and T. Sasada, “Effect of shear rate on clot growth at foreign surfaces,” Artif. Organs, vol. 9, no. 4, pp. 345–350, 1985. DOI: 10.1111/j.1525-1594.1985.tb04399.x.
  • K. Belkhiri and B. Boumeddane, “Computational hemodynamic investigation of a new bileaflet mechanical heart valve,” Simulation, vol. 96, no. 5, pp. 459–469, 2020.
  • M. Sadipour, P. Hanafizadeh, K. Sadeghy, et al., “Effect of aortic wall deformation with healthy and calcified annulus on hemodynamic performance of implanted on-X valve,” Cardiovasc. Eng. Technol., vol. 11, no. 2, pp. 141–161, 2020. DOI: 10.1007/s13239-019-00453-y.
  • H. Reul, M. Giersiepen and E. Knott, “Laboratory testing of prosthetic heart valves,” Eng. Med., vol. 16, no. 2, pp. 67–76, 1987. DOI: 10.1243/emed_jour_1987_016_018_02.
  • D. N. Ku, D. P. Giddens, C. K. Zarins and S. Glagov, “Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress,” Arteriosclerosis, vol. 5, no. 3, pp. 293–302, 1985. DOI: 10.1161/01.atv.5.3.293.
  • G. Karner, K. Perktold, M. Hofer and D. Liepsch, “Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model,” Comput. Methods Biomech. Biomed. Eng., vol. 2, no. 3, pp. 171–185, 1999. DOI: 10.1080/10255849908907986.
  • K. Dumont, J. Vierendeels, R. Kaminsky, et al., “Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model,” J. Biomech. Eng., vol. 129, no. 4, pp. 558–565, 2007. DOI: 10.1115/1.2746378.
  • L. J. Wurzinger, R. Opitz, M. Wolf and H. Schmid-Schonbein, “Shear induced platelet activation – a critical reappraisal,” Biorheology, vol. 22, no. 5, pp. 399–413, 1985. DOI: 10.3233/bir-1985-22504.
  • C. Bludszuweit, “Model for a general mechanical blood damage prediction,” Artif. Organs, vol. 19, no. 7, pp. 583–589, 1995. DOI: 10.1111/j.1525-1594.1995.tb02385.x.
  • M. Giersiepen, L. J. Wurzinger, R. Opitz and H. Reul, “Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves,” Int. J. Artif. Organs, vol. 13, no. 5, pp. 300–306, 1990. DOI: 10.1177/039139889001300507.
  • K. Affeld, A. Ziemann and K. Schichl, “Flow separation in artificial heart valves, notes on numerical fluid mechanics,” in Braunschweing/Wiesbaden, Vieweg, K. Gersten (Ed), vol. 40, pp. 184–191, 1993.
  • J. M. Hasenkam, M. Giersiepen and H. Reul, “Three-dimensional visualization of velocity fields downstream of six mechanical aortic valves in a pulsatile flow model,” J. Biomech., vol. 21, no. 8, pp. 647–661, 1988. DOI: 10.1016/0021-9290(88)90202-3.
  • R. S. Figliola and T. J. Mueller, “On the hemolytic and thrombogenic potential of occluder prosthetic heart valves from in-vitro measurements,” J. Biomech. Eng., vol. 103, no. 2, pp. 83–90, 1981. DOI: 10.1115/1.3138265.
  • R. Fatemi and K. B. Chandran, “An in vitro comparative study of st. jude medical and Edwards-Duromedics bileaflet valves using laser anemometry,” J. Biomech. Eng., vol. 111, no. 4, pp. 298–302, 1989. DOI: 10.1115/1.3168382.
  • W. Tillmann, H. Reul, M. Herold, K. H. Bruss and J. van Gilse, “In-vitro wall shear measurements at aortic valve prostheses,” J. Biomech., vol. 17, no. 4, pp. 263–279, 1984. DOI: 10.1016/0021-9290(84)90137-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.