127
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mathematical analysis of MHD stagnation point flow of Cu-blood nanofluid past an exponential stretchable surface

, &

References

  • Y. J. Kim, “Unsteady MHD convection flow of polar fluids past a vertical moving porous plate in a porous medium,” Int. J. Heat Mass Transf., vol. 44, no. 15, pp. 2791–2799, 2001.
  • R. Bhargava, L. Kumar, and H. S. Takhar, “Numerical solution of free convection MHD micropolar fluid flow between two parallel porous vertical plates,” Int. J. Eng. Sci., vol. 41, no. 2, pp. 123–136, 2003. DOI: 10.1016/S0020-7225(02)00157-X.
  • R. N. Jat and S. Chaudhary, “Radiation effects on the MHD flow near the stagnation point of a stretching sheet,” Z. Angew. Math. Phys., vol. 61, no. 6, pp. 1151–1154, 2010. DOI: 10.1007/s00033-010-0072-5.
  • H. Hosseinzadeh, M. Dehghan, and D. Mirzaei, “The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers,” Appl. Math. Model, vol. 37, no. 4, pp. 2337–2351, 2013. DOI: 10.1016/j.apm.2012.05.020.
  • S. Chaudhary and P. Kumar, “MHD forced convection boundary layer flow with a flat plate and porous substrate,” Meccanica, vol. 49, no. 1, pp. 69–77, 2014. DOI: 10.1007/s11012-013-9773-0.
  • J. Raza, A. M. Rohni, and Z. Omar, “MHD flow and heat transfer of Cu-water nanofluid in a semi porous channel with stretching walls,” Int. J. Heat Mass Transf., vol. 103, pp. 336–340, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.07.064.
  • K. Ghasemi and M. Siavashi, “MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios,” J. Magn. Magn. Mater., vol. 442, pp. 474–490, 2017. DOI: 10.1016/j.jmmm.2017.07.028.
  • M. M. Bhatti, M. A. Abbas, and M. M. Rashidi, “A robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD,” Appl. Math. Comput., vol. 316, pp. 381–389, 2018.
  • I. Rashid, M. Sagheer, and S. Hussain, “Entropy formation analysis of MHD boundary layer flow of nanofluid over a porous shrinking wall,” Physica A, vol. 536, pp. 122608, 2019. DOI: 10.1016/j.physa.2019.122608.
  • X. Xiao and C. N. Kim, “Numerical simulations of MHD flows in a conduit that contracts in the magnetic field direction,” Fusion Eng. Des., vol. 160, pp. 111990, 2020. DOI: 10.1016/j.fusengdes.2020.111990.
  • K. Hiemenz, “Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder,” Dinglers Polytech. J., vol. 326, pp. 321–324, 1911.
  • F. Homann, “Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel,” Z. Angew. Math. Mech., vol. 16, no. 3, pp. 153–164, 1936. DOI: 10.1002/zamm.19360160304.
  • P. D. Ariel, “On extra boundary condition in the stagnation point flow of a second grade fluid,” Int. J. Eng. Sci., vol. 40, no. 2, pp. 145–162, 2002.
  • Q. Wu, S. Weinbaum, and Y. Andreopoulos, “Stagnation-point flows in a porous medium,” Chem. Eng. Sci., vol. 60, no. 1, pp. 123–134, 2005. DOI: 10.1016/j.ces.2004.07.062.
  • N. Bachok, A. Ishak, and I. Pop, “Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet,” Phys. Lett. A, vol. 374, no. 40, pp. 4075–4079, 2010. DOI: 10.1016/j.physleta.2010.08.032.
  • A. Alsaedi, M. Awais, and T. Hayat, “Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions,” Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 11, pp. 4210–4223, 2012. DOI: 10.1016/j.cnsns.2012.03.008.
  • D. Pal and G. Mandal, “Mixed convection-radiation on stagnation point flow of nanofluids over a stretching/shrinking sheet in a porous medium with heat generation and viscous dissipation,” J. Petrol. Sci. Eng., vol. 126, pp. 16–25, 2015. DOI: 10.1016/j.petrol.2014.12.006.
  • T. R. Mahapatra and S. Sidui, “Heat transfer in non-axisymmetric Homann stagnation-point flows towards a stretching sheet,” Eur. J. Mech. B Fluids, vol. 65, pp. 522–529, 2017. DOI: 10.1016/j.euromechflu.2017.05.001.
  • M. Khan, H. Sardar, and M. M. Gulzar, “On radiative heat transfer in stagnation point flow of MHD Carreau fluid over a stretched surface,” Results Phys., vol. 8, pp. 524–531, 2018. DOI: 10.1016/j.rinp.2017.12.046.
  • J. Ahmed, M. Khan, and L. Ahmad, “Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink,” J. Mol. Liq., vol. 287, pp. 110853, 2019. DOI: 10.1016/j.molliq.2019.04.130.
  • S. Chaudhary and K M Kanika, “Navier’s slip condition and magnetic field effects on unsteady stagnation point flow subject to a stretched plate along to viscous dissipation and Joule heating utilizing nanofluids,” Indian J. Pure Appl. Phys., vol. 57, pp. 861–876, 2019.
  • S. Sarkar and B. Sahoo, “Analysis of oblique stagnation point flow over a rough surface,” J. Math. Anal. Appl., vol. 490, no. 1, pp. 124208, 2020. DOI: 10.1016/j.jmaa.2020.124208.
  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME Fed., vol. 231, pp. 99–105, 1995.
  • S. W. Kang, W. C. Wei, S. H. Tsai, and S. Y. Yang, “Experimental investigation of silver nano-fluid on heat pipe thermal performance,” Appl. Therm. Eng., vol. 26, no. 17–18, pp. 2377–2382, 2006. DOI: 10.1016/j.applthermaleng.2006.02.020.
  • J. Liu, S. Chen, X. Nie, and M. O. Robbins, “A continuum-atomistic simulation of heat transfer in micro- and nano-flows,” J. Comput. Phys., vol. 227, no. 1, pp. 279–291, 2007. DOI: 10.1016/j.jcp.2007.07.014.
  • N. S. Akbar, S. Nadeem, R. U. Haq, and Z. H. Khan, “Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition,” Chinese J. Aeronaut., vol. 26, no. 6, pp. 1389–1397, 2013. DOI: 10.1016/j.cja.2013.10.008.
  • J. Ham and H. Cho, “Theoretical analysis of pool boiling characteristics of Al2O3 nanofluid according to volume concentration and nanoparticle size,” Appl. Therm. Eng., vol. 108, pp. 158–171, 2016.
  • A. R. Rahmati and M. Reiszadeh, “An experimental study on the effects of the use of multi-walled carbon nanotubes in ethylene glycol/water-based fluid with indirect heaters in gas pressure reducing stations,” Appl. Therm. Eng., vol. 134, pp. 107–117, 2018. DOI: 10.1016/j.applthermaleng.2018.01.111.
  • S. R. Hosseini and M. Sheikholeslami, “Investigation of the nanofluid convective flow and entropy generation within a microchannel heat sink involving magnetic field,” Powder Technol., vol. 351, pp. 195–202, 2019. DOI: 10.1016/j.powtec.2019.04.022.
  • S. Chaudhary and K M Kanika, “Viscous dissipation and Joule heating in MHD Marangoni boundary layer flow and radiation heat transfer of Cu-water nanofluid along particle shapes over an exponential temperature,” Int. J. Comput. Math., vol. 97, no. 5, pp. 943–958, 2020. DOI: 10.1080/00207160.2019.1601713.
  • S. Jain and R. Bhargava, “Numerical simulation of free convection of MHD non-Newtonian nanofluid within a square wavy enclosure using Meshfree method,” Int. J. Comput. Meth. Eng. Sci. Mech., vol. 22, no. 1, pp. 32–44, 2021. DOI: 10.1080/15502287.2020.1846096.
  • K. Vajravelu, “Viscous flow over a nonlinearly stretching sheet,” Appl. Math. Comput., vol. 124, no. 3, pp. 281–288, 2001.
  • I. C. Liu, “A note on heat and mass transfer for a hydromagnetic flow over a stretching sheet,” Int. Commun. Heat Mass Transf., vol. 32, no. 8, pp. 1075–1084, 2005.
  • M. A. Seddeek, “Heat and mass transfer on a stretching sheet with a magnetic field in a visco-elastic fluid flow through a porous medium with heat source or sink,” Comput. Mater. Sci., vol. 38, no. 4, pp. 781–787, 2007.
  • R. N. Jat and S. Chaudhary, “MHD flow and heat transfer over a stretching sheet,” Appl. Math. Sci., vol. 3, pp. 1285–1294, 2009.
  • W. Ibrahim and B. Shankar, “MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions,” Comput. Fluids, vol. 75, pp. 1–10, 2013. DOI: 10.1016/j.compfluid.2013.01.014.
  • S. Chaudhary and M. K. Choudhary, “Partial slip and thermal radiation effects on hydromagnetic flow over an exponentially stretching surface with suction or blowing,” Therm. Sci., vol. 22, no. 2, pp. 797–808, 2018. DOI: 10.2298/TSCI160127150C.
  • S. Jahan, H. Sakidin, R. Nazar, and I. Pop, “Analysis of heat transfer in nanofluid past a convectively heated permeable stretching/shrinking sheet with regression and stability analyses,” Results Phys., vol. 10, pp. 395–405, 2018. DOI: 10.1016/j.rinp.2018.06.021.
  • M. Hamid, M. Usman, Z. H. Khan, R. Ahmad, and W. Wang, “Dual solutions and stability analysis of flow and heat transfer of Casson fluid over a stretching sheet,” Phys. Lett. A, vol. 383, no. 20, pp. 2400–2408, 2019. DOI: 10.1016/j.physleta.2019.04.050.
  • Z. Ullah, G. Zaman, and A. Ishak, “Magnetohydrodynamic tangent hyperbolic fluid flow past a stretching sheet,” Chin. J. Phys., vol. 66, pp. 258–268, 2020. DOI: 10.1016/j.cjph.2020.04.011.
  • A. Khalid, I. Khan, A. Khan, S. Shafie, and I. Tlili, “Case study of MHD blood flow in a porous medium with CNTS and thermal analysis,” Case Stud. Therm. Eng., vol. 12, pp. 374–380, 2018. DOI: 10.1016/j.csite.2018.04.004.
  • E. Abu-Nada and H. F. Oztop, “Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid,” Int. J. Heat Fluid Flow, vol. 30, no. 4, pp. 669–678, 2009. DOI: 10.1016/j.ijheatfluidflow.2009.02.001.
  • Y. Lin, B. Li, L. Zheng, and G. Chen, “Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature,” Powder Technol., vol. 301, pp. 379–386, 2016. DOI: 10.1016/j.powtec.2016.06.029.
  • N. Bachok, A. Ishak, and I. Pop, “Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid,” Int. J. Heat Mass Transf., vol. 55, no. 25–26, pp. 8122–8128, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.08.051.
  • S. S. Motsa, “A new spectral relaxation method for similarity variable nonlinear boundary layer flow systems,” Chem. Eng. Commun., vol. 201, no. 2, pp. 241–256, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.