449
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical solution of coupled 1D Burgers' equation by Non-Uniform Algebraic-Hyperbolic B-spline Differential Quadrature Method

&

References

  • M. Mohammadi, R. Mokhtari, and H. Panahipour, “A Galerkin-reproducing kernel method: Application to the 2D nonlinear coupled Burgers' equations.” Eng. Anal. Bound. Elem., vol. 37, no. 12, pp. 1642–1652, 2013.
  • D. Kaya and A. Yokus, “A decomposition method for finding solitary and periodic solutions for a coupled higher-dimensional Burgers equations.” Appl.Math. Comput., vol. 164, no. 3, pp. 857–864, 2005.
  • A. A. Soliman. “The modified extended tanh-function method for solving Burgers-type equations.” Phys. A: Stat. Mech. Appl., vol. 361, no. 2, 394–404, 2006. DOI: 10.1016/j.physa.2005.07.008.
  • S. E. Esipov. “Coupled Burgers equations: a model of polydispersive sedimentation.” Phys. Rev. E, vol. 52, no. 4, p. 3711, 1995. DOI: 10.1103/physreve.52.3711.
  • V. K. Srivastava, M. K. Awasthi, and M. Tamsir. “A fully implicit Finite-difference solution to one dimensional Coupled Nonlinear Burgers’ equations.” Int. J. Math. Sci., vol. 7, no.4, 23, 2013.
  • J. Nee and J. Duan “Limit set of trajectories of the coupled viscous Burgers' equations.” Appl. Math. Lett., vol. 11, no. 1, pp. 57–61, 1998. DOI: 10.1016/S0893-9659(97)00133-X.
  • Q. Li, Z. Chai, and B. Shi. “A novel lattice Boltzmann model for the coupled viscous Burgers’ equations.” Appl. Math. Comput., 250, 948–957, pp. 2015.
  • F. Liu, Y. Wang, and S. Li. “Barycentric interpolation collocation method for solving the coupled viscous Burgers' equations.” Int. J. Comp. Math., vol. 95, no. 11, pp. 2162–2173, 2018.
  • H. Lai and C. Ma. “A new lattice Boltzmann model for solving the coupled viscous Burgers’ equation.” Phys. A: Stat. Mech. Appl., vol. 395, pp. 445–457, 2014.
  • R. C. Mittal and R. Jiwari. “A differential quadrature method for numerical solutions of Burgers'‐type equations.” Int. J. Numer. Methods Heat Fluid Flow., vol. 16, no. 3, pp. 1304-1313, 2012. DOI: 10.1108/09615531211255761.
  • A. H. Khater, R. S. Temsah, and M. Hassan. “A Chebyshev spectral collocation method for solving Burgers’-type equations.” J. Comput. Appl. Math., vol. 222, no. 2, pp. 333–350, 2008.
  • R. C. Mittal and G. Arora. Numerical solution of the coupled viscous Burgers’ equation. Commun. Nonlinear Sci. Numer. Simul., vol. 16, no. 3, pp. 1304–1313, 2011.
  • V. K. Srivastava, M. K. Awasthi, M. Tamsir, and S. Singh. An implicit finite-difference solution to one-dimensional coupled Burgers'equations. Asian-Eur. J. Math., vol. 6, no. 4, 1350058, 2013.
  • A. Rashid and A. I. B. M. Ismail. “A Fourier pseudospectral method for solving coupled viscous Burgers equations.” Comput. Methods Appl. Math., vol. 9, no. 4, pp. 412–420, 2009.
  • K. R. Raslan, T. S. El-Danaf, and K. K. Ali. 2017. “Collocation method with quintic b-spline method for solving coupled Burgers' equations.” Far East J. Appl. Math., vol. 96, no. 1, p. 55.
  • H. M. Salih, L. N. M. Tawfiq, and Z. R. Yaha. “Numerical Solution of the Coupled viscous burgers’ equation via cubic trigonometric B-spline approach.” Math. Stat. J., vol. 2, no. 11, 2016.
  • V. K. Srivastava, M. Tamsir, M. K. Awasthi, and S. Singh. 2014. “One-dimensional coupled Burgers’ equation and its numerical solution by an implicit logarithmic finite-difference method.” Aip Adv., vol. 4, no. 3, 037119.
  • R. Mokhtari, A. S. Toodar, and N. G. Chegini. “Application of the generalized differential quadrature method in solving Burgers' equations.” Commun. Theoret. Phys., vol. 56, no. 6, 1009, 2011.
  • H. P. Bhatt and A. Q. M. Khaliq. “Fourth-order compact schemes for the numerical simulation of coupled Burgers’ equation.” Comp. Phys. Commun., vol. 200, pp. 117–138, 2016.
  • R. Jiwari, S. Kumar, and R. C. Mittal. “Meshfree algorithms based on radial basis functions for numerical simulation and to capture shocks behavior of Burgers’ type problems.” Eng. Comput., 2019. DOI: 10.1108/EC-04-2018-0189.
  • S. Pandit, M. Kumar, R. N. Mohapatra, and A. S. Alshomrani. “Shock waves analysis of planar and non planar nonlinear Burgers’ equation using Scale-2 Haar wavelets.” Int. J. Numer. Methods Heat Fluid Flow, 2017. DOI: 10.1108/HFF-05-2016-0188.
  • R. C. Mittal and S. Pandit. Sensitivity analysis of shock wave Burgers’ equation via a novel algorithm based on scale-3 Haar wavelets. Int. J. Comp. Math., vol. 95, no. 3, pp. 601–625, 2018.
  • R. Bellman, B. G. Kashef, and J. Casti. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys., vol. 10, no. 1, pp. 40–52, 1972.
  • J. R. Quan and C. T. Chang. “New insights in solving distributed system equations by the quadrature method—I. Analysis.” Comp. Chem. Eng., vol. 13, no. 7, pp. 779–788, 1989.
  • J. R. Quan and C. T. Chang. “New insights in solving distributed system equations by the quadrature method—II. Numerical experiments.” Comp. Chem. Eng., vol. 13, no. 9, 1017–1024, 1989.
  • C. Shu and B. E. Richards. (1990, January). “High resolution of natural convection in a square cavity by generalized differential quadrature.” In Proceedings of the 3rd international conference on advances in numeric methods in engineering: theory and application, Swansea, UK, 978–985.
  • Shu, C. (1991). Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation (Doctoral dissertation, ProQuest Dissertations and Theses,).
  • G. Arora and B. K. Singh. “Numerical solution of Burgers’ equation with modified cubic B-spline differential quadrature method.” Appl. Math. Comput. vol. 224, pp. 166–177, 2013.
  • A. Başhan, Y. Uçar, N. M. Yağmurlu, and A. Esen. “A new perspective for quintic B-spline based Crank-Nicolson-differential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation.” Eur. Phys. J. Plus. vol. 133, no. 1, p. 12, 2018.
  • H. S. Shukla, M. Tamsir, R. Jiwari, and V. K. Srivastava. “A numerical algorithm for computation modelling of 3D nonlinear wave equations based on exponential modified cubic B-spline differential quadrature method.” Int. J. Comp. Math., vol. 95, no. 4, pp. 752–766, 2018.
  • A. Korkmaz and İ. Dağ. “A differential quadrature algorithm for simulations of nonlinear Schrödinger equation.” Comp.Math. Appl., vol. 56, no. 9, pp. 2222–2234, 2008.
  • R. Jiwari, S. Pandit, and R. C. Mittal.“ Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method.” Comp. Phys. Commun., vol. 183, no. 3, pp. 600–616, 2012.
  • A. Korkmaz and İ. Dağ. “Cubic B‐spline differential quadrature methods for the advection‐diffusion equation.” Int. J. Numer. Methods for Heat Fluid Flow, 2012. DOI: 10.1108/09615531211271844.
  • R. C. Mittal and S. Dahiya. “Numerical simulation of three-dimensional telegraphic equation using cubic B-spline differential quadrature method.” Appl. Math. Comput., vol. 313, pp. 442–452, 2017.
  • R. Jiwari, S. Pandit, and R. C. Mittal. “A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions.” Appl. Math. Comput., 218(13), pp. 7279–7294, 2012.
  • A. Korkmaz and İ. Dağ. “Solitary wave simulations of complex modified Korteweg–de Vries equation using differential quadrature method.” Comp. Phys. Commun., vol. 180, no. 9, pp. 1516–1523, 2009.
  • R. Jiwari, R. C. Mittal, and K. K. Sharma. “A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers’ equation.” Appl. Math. Comput., vol. 219, no. 12, pp. 6680–6691, 2013.
  • R. C. Mittal and R. Bhatia. “A numerical study of two dimensional hyperbolic telegraph equation by modified B-spline differential quadrature method.” Appl. Math. Comput., vol. 244, pp. 976–997, 2014.
  • R. C. Mittal and S. Dahiya. “Numerical simulation on hyperbolic diffusion equations using modified cubic B-spline differential quadrature methods.” Comp. Math. Appl., vol. 70, no. 5, pp. 737–749, 2015.
  • R. C. Mittal and R. Rohila. “Numerical simulation of reaction-diffusion systems by modified cubic B-spline differential quadrature method.” Chaos, Solitons Fract., vol. 92, pp. 9–19, 2016.
  • R. C. Mittal and S. Dahiya. “A comparative study of modified cubic B-spline differential quadrature methods for a class of nonlinear viscous wave equations.” Eng. Comput., vol. 35, no. 1, pp. 315–333, 2018. DOI: 10.1108/EC-06-2016-0188.
  • A. Korkmaz and İ. Dağ, 2011. “Shock wave simulations using sinc differential quadrature method.” Eng. Comput. DOI: 10.1108/02644401111154619.
  • R. Jiwari, S. Pandit, and R. C. Mittal. “A differential quadrature algorithm for the numerical solution of the second-order one dimensional hyperbolic telegraph equation.” Int. J. Nonlinear Sci., vol. 13, no. 3, pp. 259–266, 2012.
  • G. Arora, V. Joshi, and R. C. Mittal. “Numerical simulation of nonlinear Schrödinger equation in one and two dimensions.” Math. Models Comput. Simul., vol. 11, no. 4, pp. 634–648, 2019.
  • G. Arora and V. Joshi. “A computational approach using modified trigonometric cubic B-spline for numerical solution of Burgers’ equation in one and two dimensions.” Alexandria Eng. J. vol. 57, no. 2, pp. 1087–1098, 2018.
  • R. Jiwari and A. Gerisch. “A local radial basis function differential quadrature semi-discretisation technique for the simulation of time-dependent reaction-diffusion problems.” Eng. Comput., vol. 38, no. 6, pp. 2666–2691, 2021. DOI: 10.1108/EC-05-2020-0291.
  • K. H. Kumar and R. Jiwari. “Legendre wavelets based numerical algorithm for simulation of multidimensional Benjamin–Bona–Mahony–Burgers and Sobolev equations.” Comp. Math. Appl., vol. 80, no. 3, pp. 417–433, 2020.
  • R. Jiwari, S. Pandit, and M. E. Koksal. A class of numerical algorithms based on cubic trigonometric B-spline functions for numerical simulation of nonlinear parabolic problems. Comput. Appl. Math., vol. 38, no. 3, pp. 1–22, 2019.
  • G. J. Wang, G. Z. Wang, and J. M. Zheng. Computer aided geometric design. Berlin, Beijing/Heidelberg: China Higher Education Press/Spring-Verlag, 2001.
  • S. Bu-Qing and L. Ding-Yuan. 2014. Computational Geometry: Curve and Surface Modeling. Elsevier.
  • X. X. Zhu. “Modeling technology of free-form curve and surface.” 2000.
  • H. Pottmann and M. G. Wagner. “Helix splines as an example of affine Tchebycheffian splines.” Adv. Comput. Math., vol. 2, no. 1, pp. 123–142, 1994.
  • B. I. Ksasov and P. Sattayatham. “GB-splines of arbitrary order.” J. Comput. Appl. Math., vol. 104, no. 1, pp. 63–88, 1999.
  • J. Zhang. “C-curves: an extension of cubic curves.” Comp. Aided Geomet. Design, vol. 13, no. 3, pp. 199–217, 1996. DOI: 10.1016/0167-8396(95)00022-4.
  • J. Zhang. “Two different forms of CB-splines.” Comp. Aided Geomet. Design, vol. 14, no. 1, pp. 31–41, 1997. DOI: 10.1016/S0167-8396(96)00019-2.
  • G. Wang, Q. Chen, and M. Zhou. “NUAT B-spline curves.” Comp. Aided Geomet. Design, vol. 21, no. 2, pp. 193–205, 2004.
  • Y. Lü, G. Wang, and X. Yang. “Uniform hyperbolic polynomial B-spline curves.” Comp. Aided Geomet. Design, vol. 19, no. 6, pp. 379–393, 2002.
  • F. Shi. Computer Aided Geometric Design and Non-uniform Rational B-Spline. Higher Education Press, 2001.
  • J. Qian and Y. Tang. “On non-uniform Algebraic-Hyperbolic (NUAH) B-splines.” Numer. Math.–English Ser., vol. 15, no. 4, p. 320, 2006.
  • W. Shen and G. Wang. “Changeable degree spline basis functions.” J. of Comput. Appl. Math., vol. 234, no. 8, pp. 2516–2529, 2010..
  • G. Xu and G. Z. Wang. “AHT Bézier curves and NUAHT B-spline curves.” J. Comp. Sci. Technol., vol. 22, no. 4, pp. 597–607, 2007.
  • S. Hajji, B. Danouj, and A. Lamnii. “UAT B-splines of Order 4 for reconstructing the curves and surfaces.” Appl. Math. Sci., vol. 12, no. 21, pp. 1007–1020, 2018.
  • Y. W. Wei and G. Z. Wang. “An orthogonal basis for non-uniform algebraic-trigonometric spline space.” Appl. Math.–J. Chinese Univ., vol. 29, no. 3, pp. 273–282, 2014.
  • A. Lamniia, F. Oumellal, and J. Dabounoua. 2015. “Tension quartic trigonometric Bézier curves preserving interpolation curves shape.” Int. J. Math. Model. Comput., vol. 5, no. 2, pp. 99–109.
  • J. Cao and G. Z. Wang. “Non-uniform B-spline curveswith multiple shape parameters.” J. Zhejiang Univ. Sci. C, vol. 12, no. 10, p. 800, 2011.
  • J. Xie, and J. Tan. “Quasi-cubic B-spline curves by trigonometric polynomials.” J. Inf. Comput. Sci., vol. 7, no. 6, pp. 1215–1221, 2010.
  • G. Xu and G. Z. Wang. “Extended cubic uniform B-spline and α-B-spline.” Acta Autom. Sin., vol. 34, no. 8, pp. 980–984, 2008.
  • M. E. Fang and G. Wang. “ωB-splines.” Sci. China Ser. F: Inf. Sci., vol. 51, no. 8, pp. 1167–1176, 2008.
  • Shu, C. Differential Quadrature and Its Application in Engineering. Springer Science and Business Media, 2012.
  • R. J. Spiteri and S. J. Rutth “A new class of optimal high -order strong stability preserving time discretization methods.” SIAM J. Numer. Anal., vol. 40, no. 2, pp. 469–49, 2002. DOI: 10.1137/S0036142901389025.
  • R. C. Mittal and R. Jiwari. “Differential quadrature method for numerical solution of coupled viscous Burgers’ equations.” International J. Comput. Methods Eng. Sci. Mech., vol. 13, no. 2, pp. 88–92, 2012. DOI: 10.1080/15502287.2011.654175.
  • D. Kaya. “An explicit solution of coupled viscous Burgers' equation by the decomposition method.” Int. J. Math. Math. Sci., vol. 27, no. 11, pp. 675–680, 2001. DOI: 10.1155/S0161171201010249.
  • B. K. Singh and P. Kumar. “A novel approach for numerical computation of Burgers’ equation in (1 + 1) and (2 + 1) dimensions.” Alexand. Eng. J. vol. 55, no. 4, pp. 3331–3344, 2016.
  • M. K. Jain. Numerical Solution of Differential Equations, 2nd ed. New York: Wiley, 1983.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.