147
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational control for strongly coupled structure, electric, and fluid systems

, & ORCID Icon

References

  • A. Mini, C. Lerch, R. Wuchner and K. U. Bletzinger, “Computational closed-loop control of fluid-structure interaction (fsci) for lightweight structures,” Proc. Appl. Math. Mech., vol. 16, no. 1, pp. 15–18, 2016. DOI: 10.1002/pamm.201610005.
  • Z. Huimeng, D. Wagg and T. Wang, “Velocity plus displacement equivalent force control for real-time substructure testing,” Earthq. Eng. Eng. Vib., vol. 17, no. 1, pp. 87–102, 2018. DOI: 10.1007/s11803-018-0427-z.
  • S. Kaneko, G. Hong, N. Mitsume, T. Yamada and S. Yoshimura, “Partitioned-coupling fsi analysis with active control,” Comput. Mech., vol. 60, no. 4, pp. 549–558, 2017. DOI: 10.1007/s00466-017-1422-3.
  • D. Ishihara, “Computational approach for the fluid-structure interaction design of insect-inspired micro flapping wings,” Fluids, vol. 7, no. 1, pp. 26, 2022. DOI: 10.3390/fluids7010026.
  • D. Ishihara, et al., “Polymer micromachined transmission for insect-inspired flapping wing nano air vehicles,” Proceedings of the 15th IEEE International Conference on Nano/Micro Engineered and Molecular System, NEMS 2020, 2020, pp. 176–179.
  • Rashmikant, D. Ishihara, R. Suetsugu, S. Murakami and P. C. Ramegowda, “Improved design of polymer micromachined transmission for flapping wing nano air vehicle,” Proceedings of the 16th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2021, 2021, pp. 1320–1325.
  • Rashmikant, D. Ishihara, R. Suetsugu, S. Murakami and P. C. Ramegowda, “One-wing polymer micromachined transmission for insect-inspired flapping wing nano air vehicles,” Eng. Res. Express, vol. 3, pp. 1320–1325, 2021. DOI: 10.1088/2631-8695/ac2bf0.
  • P. C. Ramegowda, “Coupled multiphysics analysis method for thin flexible piezoelectric bimorph in fluid,” PhD dissertation, Kyushu Institute of Technology Japan, March 2019.
  • J. Curie and P. Curie, “Development via compression of electric polarization in hemihedral crystals with inclined faces,” bulmi, vol. 3, no. 4, pp. 90–93, 1880. DOI: 10.3406/bulmi.1880.1564.
  • H. S. Tzou, “Development of a light-weight robot end-effector using polymeric piezoelectric bimorph,” Proc. IEEE Int. Conf. Robot. Automat., vol. 3, pp. 1704–1709, 1989.
  • T. Shibata, K. Unno, E. Makino and S. Shimada, “Fabrication and characterization of diamond afm probe integrated with pzt thin film sensor and actuator,” Sensors Actuators A: Phys., vol. 114, no. 2–3, pp. 398–405, 2004. pp.:DOI: 10.1016/j.sna.2003.11.025.
  • Z. Wang, S. Chen and W. Han, “The static shape control for intelligent structures,” Finite Elem. Anal. Des., vol. 26, no. 4, pp. 303–314, 1997. DOI: 10.1016/S0168-874X(97)00086-3.
  • Y. H. Lim, V. V. Varadan and V. K. Varadan, “Closed loop finite element modeling of active structural damping in the frequency domain,” Smart Mater. Struct., vol. 6, no. 2, pp. 161–168, 1997. DOI: 10.1088/0964-1726/6/2/005.
  • K. M. Liew, X. Q. He and S. Kitipornchai, “Finite element method for the feedback control of fgm shells in the frequency domain via piezoelectric sensors and actuators,” Smart Mater. Struct., vol. 37, pp. 161–168, 1997.
  • V. Balamurugan and S. Narayanan, “Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of vibration control,” Finite Elem. Anal. Des., vol. 37, no. 9, pp. 713–738, 2001. DOI: 10.1016/S0168-874X(00)00070-6.
  • L. Chirco and S. Manservisi, “On the optimal control of stationary fluid–structure interaction systems,” Fluids, vol. 5, no. 3, pp. 144, 2020. DOI: 10.3390/fluids5030144.
  • I. Lasiecka and Y. Lu, “Interface feedback control stabilization of a nonlinear fluid–structure interaction,” Nonlinear Anal. Theory Methods Appl., vol. 75, no. 3, pp. 1449–1460, 2012. DOI: 10.1016/j.na.2011.04.018.
  • T. Y. Zhao, Y. Ma, H. Y. Zhang, H. G. Pan and Y. Cai, “Free vibration analysis of a rotating graphene nanoplatelet reinforced pre-twist blade-disk assembly with a setting angle,” APPl. Math. Model., vol. 93, pp. 578–596, 2021. DOI: 10.1016/j.apm.2020.12.025.
  • H. Li, et al., “Nonlinear vibrations of fiber-reinforced composite cylindrical shells with bolt loosening boundary conditions,” J. Sound Vibrat., vol. 496, pp. 115935, 2021. DOI: 10.1016/j.jsv.2021.115935.
  • Z. Qin, Z. Yang, J. Zu and F. Chu, “Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates,” Int. J. Mech. Sci., vol. 142–143, pp. 127–139, 2018. DOI: 10.1016/j.ijmecsci.2018.04.044.
  • M. M. Zhang, L. Cheng and Y. Zhou, “Closed-loop controlled vortex shedding and vibration of a flexibly supported square cylinder under different schemes,” Phys. Fluids, vol. 16, no. 5, pp. 1439–1448, 2004. DOI: 10.1063/1.1687413.
  • A. Mehmood, A. Abdelkefi, I. Akhtar, A. H. Nayfeh, A. Nuhait and M. R. Hajj, “Linear and nonlinear active feedback controls for vortex-induced vibrations of circular cylinders,” J. Vib. Control, vol. 20, no. 8, pp. 1137–1147, 2014. DOI: 10.1177/1077546312469425.
  • N. M. Newmark, “A method of computation for structural dynamics,” J. Engrg. Mech. Div., vol. 85, no. 3, pp. 67–94, 1959. DOI: 10.1061/JMCEA3.0000098.
  • D. Ishihara and T. Horie, “A projection method for the monolithic interaction system of an incompressible fluid and a structure using a new algebraic splitting,” Comput. Model. Eng. Sci., vol. 101, no. 6, pp. 421–440, 2014.
  • B. Hubner, E. Walhorn and D. Dinkler, “A monolithic approach to fluid–structure interaction using space–time finite elements,” Comput. Methods Appl. Mech. Eng., vol. 193, no. 23–26, pp. 2087–2104, 2004. DOI: 10.1016/j.cma.2004.01.024.
  • C. A. Felippa, K. C. Park and C. Farhat, “Partitioned analysis of coupled mechanical system,” Comput. Methods Appl. Mech. Eng., vol. 190, no. 24–25, pp. 3247–3270, 2001. DOI: 10.1016/S0045-7825(00)00391-1.
  • S. Minami and S. Yoshimura, “Performance evaluation of nonlinear algorithms with line search for partitioned coupling technique for fluid-structure interactions,” Int. J. Numer. Meth. Fluids, vol. 64, no. 10–12, pp. 1129–1147, 2010. DOI: 10.1002/fld.2274.
  • T. Yamada and S. Yoshimura, “Line search partitioned approach for fluid–structure interaction analysis of flapping wing,” Comput. Model. Eng. Sci., vol. 24, pp. 51–60, 2008.
  • M. Neumann, S. R. Tiyyagura and W. A. Wall, “Robustness and efficiency aspects for computational fluid structure interaction,” Computational Sci. High Performance Comput. II, vol. 91, pp. 99–114, 2006.
  • J. Degroote, K. J. Bathe and J. Vierendeels, “Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction,” Comput. Struct., vol. 87, no. 11–12, pp. 793–801, 2009. DOI: 10.1016/j.compstruc.2008.11.013.
  • A. Baz and J. Ro, “Active control of flow-induced vibrations of a flexible cylinder using direct velocity feedback,” J. Sound Vib., vol. 146, no. 1, pp. 33–35, 1991. DOI: 10.1016/0022-460X(91)90521-K.
  • A. Winterstein, C. Lerch, K. W. Bletzinger and R. Wuchner, “Partitioned simulation strategies for fluid–structure–control interaction problems by gauss–seidel formulations,” Adv. Model. Simul. Eng. Sci., vol. 5, no. 1, pp. 29, 2018. DOI: 10.1186/s40323-018-0123-6.
  • D. J. Pines and F. Bohorquez, “Challenges facing future micro-air-vehicle development,” J. Aircraft, vol. 43, no. 2, pp. 290–305, 2006. DOI: 10.2514/1.4922.
  • D. Ishihara, N. Ohira, M. Takagi and T. Horie, 2017. “Fluid-structure interaction design of insect-like micro flapping wing,” Proceeding of the VII International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS 2017), pp. 870–875.
  • S. M. Joshi, “Robustness properties of collocated controllers for flexible spacecraft,” J. Guid. Control Dynam., vol. 9, no. 1, pp. 85–91, 1986. DOI: 10.2514/3.20071.
  • H. Allik and T. J. R. Hughes, “Finite element method for piezoelectric vibration,” Int. J. Numer. Meth. Engng., vol. 2, no. 2, pp. 151–157, 1970. DOI: 10.1002/nme.1620020202.
  • P. C. Ramegowda, D. Ishihara, T. Niho and T. Horie, “Performance evaluation of numerical finite element coupled algorithms for structure-electric interaction analysis of mems piezoelectric actuator,” Int. J. Comput. Methods, vol. 16, no. 07, pp. 1850106, 2019. DOI: 10.1142/S0219876218501062.
  • P. C. Ramegowda, D. Ishihara, T. Niho and T. Horie, “A novel coupling scheme for the electric field–structure interaction using a transformation method between solid and shell elements in a thin piezoelectric bimorph actuator and sensor analysis,” Finite Elem. Anal. Des., vol. 159, pp. 33–49, 2019. DOI: 10.1016/j.finel.2019.02.001.
  • T. Niho, T. Horie, J. Uefhji and D. Ishihara, “Stability analysis and evaluation of staggered coupled analysis methods for electromagnetic and structural coupled finite element analysis,” Comput. Struct., vol. 178, pp. 129–142, 2017. DOI: 10.1016/j.compstruc.2016.09.003.
  • T. Nomura and T. J. R. Hughes, “An arbitrary lagrangian–eulerian finite element formulation for interaction of fluid and a rigid body,” Comput. Methods Appl. Mech. Eng., vol. 95, no. 1, pp. 115–138, 1992. DOI: 10.1016/0045-7825(92)90085-X.
  • A. N. Brooks and T. J. R. Hughes, “Streamline upwind/petrov–galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier–stokes equation,” Comput. Methods Appl. Mech. Eng., vol. 32, no. 1–3, pp. 199–259, 1982. DOI: 10.1016/0045-7825(82)90071-8.
  • T. E. Tezduyar, “Stabilized finite element formulations for incompressible flow computations,” Adv. APPl. Mech., vol. 28, pp. 1–44, 1992.
  • H. Noguchi and T. Hisada, “Sensitivity analysis in post-buckling problems of shell structures,” Comput. Struct., vol. 47, no. 4–5, pp. 699–710, 1993. DOI: 10.1016/0045-7949(93)90352-E.
  • D. Ishihara and S. Yoshimura, “A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure poisson equation,” Int. J. Numer. Meth. Engng., vol. 64, no. 2, pp. 167–203, 2005. DOI: 10.1002/nme.1348.
  • D. P. Mok and W. A. Wall, 2001, “Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures,” Trends in Computational Structural Mechanics. CIMNE: Barcelona, pp. 689–698.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.