402
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Mechanical design of an upper limb robotic rehabilitation system

, , , &

References

  • WHO, World Report on Disability. Geneva: World Health Organization, 2011.
  • T. Jabeen, et al., “Upper and lower limbs disability and personality traits,” J. Ayub. Med. Coll. Abbottabad, vol. 28, no. 2, pp. 348–352, 2016.
  • F. D. Dick, et al., “Workplace management of upper limb disorders: a systematic review,” Occup. Med., vol. 61, no. 1, pp. 19–25, 2010. DOI: 10.1093/occmed/kqq174.
  • K. Fagher and J. Lexell, “Sports-related injuries in athletes with disabilities,” Scand J. Med. Sci. Sports, vol. 24, no. 5, pp. e320–e331, 2014. DOI: 10.1111/sms.12175.
  • S. K. Hillman, Core Concepts in Athletic Training and Therapy with Web Resource. Champaign: Human Kinetics, Inc., 2012.
  • ACP., “Physiotherapy: its principles and practice,” Ann. Intern. Med., vol. 6, no. 2, pp. 298, Aug. 1932. DOI: 10.7326/0003-4819-6-2-298.
  • P. Ritchie, “Sports injuries: mechanisms, prevention, treatment. second edition,” Arthroscopy, vol. 19, no. 4, pp. 448, 2003. http://www.sciencedirect.com/science/article/pii/S074980630370005X. DOI: 10.1016/S0749-8063(03)70005-X.
  • H. H. Kessler, “The principles and practices of rehabilitation,” Phys. Ther., vol. 30, no. 3, pp. 126–127, Mar. 1950. DOI: 10.1093/ptj/30.3.126.
  • K. A. Wattchow, M. N. McDonnell and S. L. Hillier, “Rehabilitation interventions for upper limb function in the first four weeks following stroke: a systematic review and meta-analysis of the evidence,” Arch. Phys. Med. Rehabil., vol. 99, no. 2, pp. 367–382, Feb. 2018. DOI: 10.1016/j.apmr.2017.06.014.
  • A. M. Bruder, et al., “Prescribed exercise programs may not be effective in reducing impairments and improving activity during upper limb fracture rehabilitation: a systematic review,” J. Physiother., vol. 63, no. 4, pp. 205–220, Oct. 2017. DOI: 10.1016/j.jphys.2017.08.009.
  • C. Milicin and E. Sîrbu, “A comparative study of rehabilitation therapy in traumatic upper limb peripheral nerve injuries,” NeuroRehabilitation, vol. 42, no. 1, pp. 113–119, Jan. 2018. DOI: 10.3233/NRE-172220.
  • R. Prosser, and W. B. Conolly, Eds. Rehabilitation of the Hand & Upper Limb. Oxford: Butterworth-Heinemann, 2003, pp. vii–viii. http://www.sciencedirect.com/science/article/pii/B9780750622639500020.
  • D. H. Gates, et al., “Range of motion requirements for upper-limb activities of daily living,” Am J. Occup. Ther., vol. 70, no. 1, pp. 7001350010p1–7001350010p10, Dec. 2016. DOI: 10.5014/ajot.2016.015487.
  • D. Bankson, “Clinical tests for the musculoskeletal system: examination—signs—phenomena,” Phys. Ther., vol. 86, no. 7, pp. 1042–1042, Jul. 2006. DOI: 10.1093/ptj/86.7.1042.
  • N. Linda, et al., Assistive Technologies for People with Disabilities - PART II: Current and Emerging Technologies. Brussel: European Union, 2018.
  • O. A. Olanrewaju, A. A. Faieza and K. Syakirah, “Application of robotics in medical fields: rehabilitation and surgery,” IJCAT, vol. 52, no. 4, pp. 251–256, Dec. 2015. DOI: 10.1504/IJCAT.2015.073591.
  • R. Ballantyne and P. M. Rea, “A game changer: ‘the use of digital technologies in the management of upper limb rehabilitation,” in Advances in Experimental Medicine and Biology. Cham: Springer International Publishing, 2019, pp. 117–147. DOI: 10.1007/978-3-030-31904-5_9.
  • F. Molteni, et al., “Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: narrative review,” PM R, vol. 10, no. 2, pp. S174–S188, Sep. 2018. DOI: 10.1016/j.pmrj.2018.06.005.
  • M. Munih and T. Bajd, “Rehabilitation robotics,” Technol. Health Care, vol. 19, no. 6, pp. 483–495, 2011. DOI: 10.3233/THC-2011-0646.
  • Y. Zimmermann, et al., “ANYexo: a Versatile and Dynamic Upper-Limb Rehabilitation Robot,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 3649–3656, 2019. DOI: 10.1109/LRA.2019.2926958.
  • S. Lessard, et al., “A Soft Exosuit for Flexible Upper-Extremity Rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 8, pp. 1604–1617, 2018. DOI: 10.1109/TNSRE.2018.2854219.
  • K. Liu, et al., “Postural Synergy based Design of Exoskeleton Robot Replicating Human Arm Reaching Movements,” Robotics Auton. Syst., vol. 99, pp. 84–96, 2018. DOI: 10.1016/j.robot.2017.10.003.
  • B. Ugurlu, et al., “Proof of Concept for Robot-Aided Upper Limb Rehabilitation Using Disturbance Observers,” IEEE Trans. Human-Mach. Syst, vol. 45, no. 1, pp. 110–118, 2015. DOI: 10.1109/THMS.2014.2362816.
  • M. R. Islam, B. Brahmi, T. Ahmed, Md. Assad-Uz-Zaman, and M. H. Rahman, “Exoskeletons in upper limb rehabilitation: areview to find key challenges to improve functionality,” in Control Theory in Biomedical Engineering. Academic Press, Elsevier, 2020, pp. 235–265. doi: 10.1016/b978-0-12-821350-6.00009-3.
  • ISO 10993-1:2018, “Biological evaluation of medical devices—part 1: evaluation and testing within a risk management process,” 2023. https://www.iso.org/standard/68936.html.
  • IEC Webstore – International Electrotechnical Commission. IEC 60601-1:2023 SER, medical electrical equipment – ALL PARTS. 2023. https://webstore.iec.ch/publication/2603
  • T. Hanawa, “Research and development of metals for medical devices based on clinical needs,” Sci. Technol. Adv. Mater., vol. 13, no. 6, pp. 064102, Dec. 2012. DOI: 10.1088/1468-6996/13/6/064102.
  • A. Festas, A. Ramos and J. Davim, “Medical devices biomaterials – a review,” Proc. Inst. Mech. Eng. L., vol. 234, no. 1, pp. 218–228, Oct. 2019. DOI: 10.1177/1464420719882458.
  • R. Merchant, et al., “Integrated wearable and self-carrying active upper limb orthosis,” Proc. Inst. Mech. Eng. H, vol. 232, no. 2, pp. 172–184, 2018. DOI: 10.1177/0954411917751001.
  • K.-Y. Wu, et al., “A 5-degrees-of-freedom lightweight elbow-wrist exoskeleton for forearm fine-motion rehabilitation,” IEEE/ASME Trans. Mechatron., vol. 24, no. 6, pp. 2684–2695, 2019. DOI: 10.1109/TMECH.2019.2945491.
  • L. Zhang, et al., “Improvement of human–machine compatibility of upper-limb rehabilitation exoskeleton using passive joints,” Robot. Auton. Syst., vol. 112, pp. 22–31, 2019. DOI: 10.1016/j.robot.2018.10.012.
  • A. Zeiaee, et al., “Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients,” 2017 International Conference on Rehabilitation Robotics (ICORR), 2017. IEEE. DOI: 10.1109/icorr.2017.8009339.
  • A. Zeiaee, et al., “CLEVERarm: a lightweight and compact exoskeleton for upper-limb rehabilitation,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 1880–1887, 2022. Apr DOI: 10.1109/LRA.2021.3138326.
  • A. Frisoli, et al., “A new force-feedback arm exoskeleton for haptic interaction in virtual environments,” First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. IEEE. DOI: 10.1109/WHC.2005.15.
  • Q. Miao, et al., “A three-stage trajectory generation method for robot-assisted bilateral upper limb training with subject-specific adaptation,” Robot. Auton. Syst., vol. 105, pp. 38–46, 2018. DOI: 10.1016/j.robot.2018.03.010.
  • Q. Miao, et al., “Subject-specific compliance control of an upper-limb bilateral robotic system,” Robot. Auton. Syst., vol. 126, pp. 103478, 2020. DOI: 10.1016/j.robot.2020.103478.
  • Q. Miao, et al., “A robot-assisted bilateral upper limb training strategy with subject-specific workspace: a pilot study,” Robot. Auton. Syst., vol. 124, pp. 103334, 2020. DOI: 10.1016/j.robot.2019.103334.
  • B. Sheng, et al., “An industrial robot-based rehabilitation system for bilateral exercises,” IEEE Access, vol. 7, pp. 151282–151294, 2019. DOI: 10.1109/ACCESS.2019.2948162.
  • L. Zhang, S. Guo and Q. Sun, “Development and assist-as-needed control of an end-effector upper limb rehabilitation robot,” Appl. Sci., vol. 10, no. 19, pp. 6684, Sep. 2020. DOI: 10.3390/app10196684.
  • J. Sun, Y. Shen and J. Rosen, “Sensor reduction, estimation, and control of an upper-limb exoskeleton,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 1012–1019, Apr. 2021. DOI: 10.1109/LRA.2021.3056366.
  • S. Kumar, et al., “Modular design and decentralized control of the RECUPERA exoskeleton for stroke rehabilitation,” Appl. Sci., vol. 9, no. 4, pp. 626, 2019. DOI: 10.3390/app9040626.
  • HOCOMA. “Hocoma Products Overview.” 2020. https://www.hocoma.com/solutions/arm-hand/.
  • W. Wu, et al., “Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton,” J Biomech, vol. 72, pp. 7–16, 2018. DOI: 10.1016/j.jbiomech.2018.02.019.
  • G. M. Cruz Martínez and L. Z-Avilés, “Design methodology for rehabilitation robots: application in an exoskeleton for upper limb rehabilitation,” APPl. Sciences, vol. 10, no. 16, pp. 5459, 2020. DOI: 10.3390/app10165459.
  • J. R. Palacios, Sistema locomotor extremidad superior, 2015. https://www.infermeravirtual.com/esp/actividades_de_la_vida_diaria/ficha/extremidad_superior/sistema_locomotor.
  • A. F. D. Keith L Moore and A. M. R. Agur, Moore, Anatomía Con Orientación Clínica. Philadelphia: Wolters Kluwer Health, S.A., Lippincott Williams & Wilkins, 2013.
  • G. Fierro, “anatomía del hombro,” guido fierro ortopedia y traumatología - cirugía de hombro y codo, 2015. https://www.guidofierro.com/diagnostico-y-tratamiento.
  • D. V. Knudson, and D. Knudso. Fundamentals of Biomechanics. New York: Springer US; 2007.
  • C. H. Taboadela, Goniometria una herramienta para la evaluacion de las incapacidades. Buenos Aires: Medicine Asociart Art, 2007, pp. 1–130.
  • R. Á. Chaurand, L. R. P. León and E. L. G. Muñoz, Dimensiones Antropométricas de Población Latinoamericana. Guadalajara: Universidad de Guadalajara, CUAAD, 2007.
  • U.S. National Library of Medicine. “Elbow injuries and disorders,” 2021. https://medlineplus.gov/elbowinjuriesand disorders.html
  • D. M. C. Ruiz, “Epicondilitis lateral: conceptos de actualidad. revisión de tema,” Revista Med de la Facultad de Medicina, vol. 19, no. 1, pp. 9, 2011.
  • Unidad de Cirugía Artroscópica, “Epicondilitis”, 2020. https://www.ucaorthopedics.com/patologias/codo/epicondilitis/
  • Grupo dtdodcodB, “Epicondilitis y epitrocleítis. revisión,” Farmacia Profesional, vol. 25, no. 6, pp. 49–51, 2011. https://www.elsevier.es/es-revista-farmacia-profesional-3-articulo-epicondilitis-epitrocleitis-revision-X0213932411435678ER.
  • SportMe., “las tendinitis del codo. epicondilitis y epitrocleitis” medical center sportme, 2020. https://clinicabernaldez.com/tendinitis-del-codo-dolor-de-codo-epicondilitis-epitrocleitis/
  • P. Vulliet, et al., “Patologías del codo y rehabilitación,” EMC, vol. 38, no. 2, pp. 1–18, 2017. http://www.sciencedirect.com/science/article/pii/S1293296517836641. DOI: 10.1016/S1293-2965(17)83664-1.
  • T. Henning, “Clinical tests for the musculoskeletal system: examinations-signs-phenomena,” JAMA, vol. 303, no. 15, pp. 1541, Apr. 2010. DOI: 10.1001/jama.2010.468.
  • M. Cortez and I. Ramos, Revisión documental de los métodos diagnósticos y de tamizaje en desórdenes músculo esqueléticos en miembros superiores de etiología laboral; 2017.
  • B. Brahmi, et al., “Adaptive tracking control of an exoskeleton robot with uncertain dynamics based on estimated time-delay control,” IEEE/ASME Trans. Mechatron., vol. 23, no. 2, pp. 575–585, 2018. DOI: 10.1109/TMECH.2018.2808235.
  • B. Brahmi, et al., “Cartesian Trajectory Tracking of a 7-DOF Exoskeleton Robot Based on Human Inverse Kinematics,” IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 3, pp. 600–611, 2019. DOI: 10.1109/TSMC.2017.2695003.
  • Q. Wu, et al., “Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton,” Mechatronics, vol. 53, no. June, pp. 85–94, 2018. DOI: 10.1016/j.mechatronics.2018.05.014.
  • Q. Wu and H. Wu, “Development, dynamic modeling, and multi-modal control of a therapeutic exoskeleton for upper limb rehabilitation training,” Sensors, vol. 18, no. 11, pp. 3611, 2018. DOI: 10.3390/s18113611.
  • G. Airò Farulla, et al., “Vision-based pose estimation for robot-mediated hand telerehabilitation,” Sensors, vol. 16, no. 2, pp. 208, 2016. DOI: 10.3390/s16020208.
  • J. Bai, et al., “A novel backstepping adaptive impedance control for an upper limb rehabilitation robot,” Comput. Elect. Eng., vol. 80, pp. 106465, 2019. DOI: 10.1016/j.compeleceng.2019.106465.
  • D. Copaci, et al., “SMA Based Elbow Exoskeleton for Rehabilitation Therapy and Patient Evaluation,” IEEE Access, vol. 7, pp. 31473–31484, 2019. DOI: 10.1109/ACCESS.2019.2902939.
  • H.-C. Hsieh, et al., “Design of a parallel actuated exoskeleton for adaptive and safe robotic shoulder rehabilitation,” IEEE/ASME Trans. Mechatron., vol. 22, no. 5, pp. 2034–2045, 2017. DOI: 10.1109/TMECH.2017.2717874.
  • S. Huang, et al., “SEMG-Based detection of compensation caused by fatigue during rehabilitation therapy: a pilot study,” IEEE Access, vol. 7, pp. 127055–127065, 2019. DOI: 10.1109/ACCESS.2019.2933287.
  • X. Huang, et al., “The combined effects of adaptive control and virtual reality on robot-assisted fine hand motion rehabilitation in chronic stroke patients: a case study,” J. Stroke Cerebrovasc. Dis., vol. 27, no. 1, pp. 221–228, 2018. DOI: 10.1016/j.jstrokecerebrovasdis.2017.08.027.
  • I. Hussain, et al., “A soft supernumerary robotic finger and mobile arm support for grasping compensation and hemiparetic upper limb rehabilitation,” Robot. Auton. Syst., vol. 93, pp. 1–12, 2017. DOI: 10.1016/j.robot.2017.03.015.
  • M. R. Islam, et al., “An ergonomic shoulder for robot-aided rehabilitation with hybrid control,” Microsyst. Technol., vol. 27, no. 1, pp. 159–172, 2020. DOI: 10.1007/s00542-020-04934-2.
  • B. Sheng, et al., “Development of a biological signal-based evaluator for robot-assisted upper-limb rehabilitation: a pilot study,” Australas. Phys. Eng. Sci. Med., vol. 42, no. 3, pp. 789–801, 2019. DOI: 10.1007/s13246-019-00783-0.
  • M. Tiboni, et al., “Robotics rehabilitation of the elbow based on surface electromyography signals,” Adv. Mech. Eng., vol. 10, no. 2, pp. 168781401875459, 2018. DOI: 10.1177/1687814018754590.
  • D. Wang, et al., “Design and development of a portable exoskeleton for hand rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 12, pp. 2376–2386, 2018. DOI: 10.1109/TNSRE.2018.2878778.
  • Z. Yang, et al., “An intention-based online bilateral training system for upper limb motor rehabilitation,” Microsyst. Technol., vol. 27, no. 1, pp. 211–222, 2020. DOI: 10.1007/s00542-020-04939-x.
  • L. Zhang, et al., “Design and performance analysis of a parallel wrist rehabilitation robot (PWRR),” Robot. Auton. Syst., vol. 125, pp. 103390, 2020. DOI: 10.1016/j.robot.2019.103390.
  • A. Bertomeu-Motos, et al., “Estimation of human arm joints using two wireless sensors in robotic rehabilitation tasks,” Sensors, vol. 15, no. 12, pp. 30571–30583, 2015. DOI: 10.3390/s151229818.
  • Y. Bouteraa, I. Ben Abdallah and A. Elmogy, “Design and control of an exoskeleton robot with EMG-driven electrical stimulation for upper limb rehabilitation,” IR, vol. 47, no. 4, pp. 489–501, 2020. DOI: 10.1108/IR-02-2020-0041.
  • J. Liu, et al., “EMG-based real-time linear-nonlinear cascade regression decoding of shoulder, elbow, and wrist movements in able-bodied persons and stroke survivors,” IEEE Trans. Biomed. Eng., vol. 67, no. 5, pp. 1272–1281, 2020. DOI: 10.1109/TBME.2019.2935182.
  • A. Mancisidor, et al., “Inclusive and seamless control framework for safe robot-mediated therapy for upper limbs rehabilitation,” Mechatronics, vol. 58, pp. 70–79, 2019. DOI: 10.1016/j.mechatronics.2019.02.002.
  • A. Mancisidor, et al., “Virtual sensors for advanced controllers in rehabilitation robotics,” Sensors, vol. 18, no. 3, pp. 785, 2018. DOI: 10.3390/s18030785.
  • D. Simonetti, et al., “A modular telerehabilitation architecture for upper limb robotic therapy,” Adv. Mech. Eng., vol. 9, no. 2, pp. 168781401668725, 2017. DOI: 10.1177/1687814016687252.
  • R. Avila-Chaurand, L. Prado-León and E. González-Muñoz, Dimensiones antropométricas de la población latinoamericana: méxico, cuba, colombia, chile/r. avila chaurand, l.r. prado león, e.l. gonzález muñoz. 2007.
  • C. C. Gordon, et al., 2012 anthropometric survey of U.S Army Personnel: Methods and Summary Statistics. Natick, MA: US Army Natick Research Development and Engineering Center, 1989.
  • J.-Y. Hogrel, et al., “Development of a French isometric strength normative database for adults using quantitative muscle testing,” Arch. Phys. Med. Rehabil., vol. 88, no. 10, pp. 1289–1297, Oct. 2007. DOI: 10.1016/j.apmr.2007.07.011.
  • M. Romero-Acevedo, A. Guatibonza and A. Velasco-Vivas, “Modular knee-rehabilitation device: configuration and workspace of assisted physical therapy routines,” 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA), 2018. IEEE. DOI: 10.1109/CCRA.2018.8588129.
  • A. F. Guatibonza, L. Solaque and A. Velasco, “Kinematic and dynamic modeling of a 5-bar assistive device for knee rehabilitation,” 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), 2018. IEEE. DOI: 10.1109/ETCM.2018.8580314.
  • B. Kim and A. D. Deshpande, “An upper-body rehabilitation exoskeleton harmony with an anatomical shoulder mechanism: design, modeling, control, and performance evaluation,” Int. J. Robot. Res., vol. 36, no. 4, pp. 414–435, Apr. 2017. DOI: 10.1177/0278364917706743.
  • T. Nef, M. Guidali and R. Riener, “ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation,” Appl. Bionics. Biomechan., vol. 6, no. 2, pp. 127–142, Jul. 2009. DOI: 10.1080/11762320902840179.
  • E. Akdoğan, et al., “Hybrid impedance control of a robot manipulator for wrist and forearm rehabilitation: performance analysis and clinical results,” Mechatronics, vol. 49, pp. 77–91, Feb. 2018. DOI: 10.1016/j.mechatronics.2017.12.001.
  • A. Guatibonza, L. Solaque, A. Velasco, et al., “Hybrid impedance and nonlinear adaptive control for a 7-DoF upper limb rehabilitation robot: formulation and stability analysis,” Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics. SCITEPRESS – Science and Technology Publications, 2021. DOI: 10.5220/0010579206850692.
  • B. Siciliano, et al., Robotics. London: Springer, 2009.
  • M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot Modeling and Control, 1st ed.; New York: Wiley, 2005.
  • P. Corke, Robotics and Control. Verlag: Springer International Publishing, 2022.
  • L. Toth, et al., “Developing an anti-spastic orthosis for daily home-use of stroke patients using smart memory alloys and 3d printing technologies,” Mater. Design, vol. 195, pp. 109029, Oct. 2020. DOI: 10.1016/j.matdes.2020.109029.
  • N. Kapadia, et al., “3-dimensional printing in rehabilitation: feasibility of printing an upper extremity gross motor function assessment tool,” Biomed. Eng. Online, vol. 20, no. 1, pp. 2, Jan. 2021. DOI: 10.1186/s12938-020-00839-3.
  • C. Lunsford, et al., “Innovations with 3-dimensional printing in physical medicine and rehabilitation: a review of the literature,” PM R, vol. 8, no. 12, pp. 1201–1212, Dec. 2016. DOI: 10.1016/j.pmrj.2016.07.003.