53
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Flexible polyurethane foam as personal protective mask material: a numerical and experimental study

, &

References

  • S. S. Ray, Y. I. Park, H. Park, S. E. Nam, I. C. Kim and Y. N. Kwon, “Surface innovation to enhance anti-droplet and hydrophobic behavior of breathable compressed-polyurethane masks,” Environ. Technol. Innov., vol. 20, pp. 101093, Nov. 2020. DOI: 10.1016/j.eti.2020.101093.
  • R. Herrington and H. Hock, Flexible Polyurethane Foams, 2nd ed., Midland: Dow Chemical Co., 1997
  • P. Kundu, V. Kumar and I. M. Mishra, “Numerical modeling of turbulent flow through isotropic porous media,” Int. J. Heat Mass Transf., vol. 75, pp. 40–57, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.020.
  • A. Nakayama and F. Kuwahara, “A macroscopic turbulence model for flow in a porous medium,” ASME J. Fluids Eng., vol. 121, no. 2, pp. 427–433, 1999. DOI: 10.1115/1.2822227.
  • Y. Fumoto, R. Liu, Y. Sano and X. Huang, “A three-dimensional numerical model for determining the pressure drops in porous media consisting of obstacles of different sizes,” TOTPJ, vol. 4, no. 1, pp. 1–8, 2012. DOI: 10.2174/1877729501204010001.
  • N. J. Mills, “The wet Kelvin model for air flow through open-cell polyurethane foams,” J. Mater. Sci., vol. 40, no. 22, pp. 5845–5851, 2005. DOI: 10.1007/s10853-005-5018-5.
  • M. Borovinšek and Z. Ren, “Computational modelling of irregular open-cell foam behaviour under impact loading,” Materialwissenschaft Werkst, vol. 39, no. 2, pp. 114–120, 2008. DOI: 10.1002/mawe.200700270.
  • R. M. Sullivan, L. J. Ghosn and B. A. Lerch, “A general tetrakaidecahedron model for open-celled foams,” Int. J. Solids Struct., vol. 45, no. 6, pp. 1754–1765, 2008. DOI: 10.1016/j.ijsolstr.2007.10.028.
  • D. Montoya-Zapata, C. Cortés and O. Ruiz-Salguero, “FE-simulations with a simplified model for open-cell porous materials: A Kelvin cell approach,” JCM, vol. 19, no. 4, pp. 989–1000, 2019. DOI: 10.3233/JCM-193669.
  • T. T. Huu, M. Lacroix, C. Pham Huu, D. Schweich and D. Edouard, “Towards a more realistic modeling of solid foam: use of the pentagonal dodecahedron geometry,” Chem. Eng. Sci., vol. 64, no. 24, pp. 5131–5142, 2009. DOI: 10.1016/j.ces.2009.08.028.
  • Q. Yu, B. E. Thompson and A. G. Straatman, “A unit cube-based model for heat transfer and fluid flow in porous carbon foam,” ASME J. Heat Transf., vol. 128, no. 4, pp. 352–360, 2005. DOI: 10.1115/1.2165203.
  • N. J. Dyck and A. G. Straatman, “A new approach to digital generation of spherical void phase porous media microstructures,” Int. J. Heat Mass Transf., vol. 81, pp. 470–477, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.017.
  • C. Fleet and A. G. Straatman, “A model for the conduction shape factor in spherical void phase porous materials,” Int. J. Heat Mass Transf., vol. 164, pp. 120583, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120583.
  • A. Thabet and A. G. Straatman, “The development and numerical modelling of a representative elemental volume for packed sand,” Chem. Eng. Sci., vol. 187, pp. 117–126, 2018. DOI: 10.1016/j.ces.2018.04.054.
  • M. Elhalwagy and A. G. Straatman, “Dynamic coupling of phase-heat and mass transfer in porous media and conjugate fluid/porous domains,” Int. J. Heat Mass Transf., vol. 106, pp. 1270–1286, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.108.
  • J. Liu, Y. Sano and A. Nakayama, “A simple mathematical model for determining the equivalent permeability of fractured porous media,” Int. Commun. Heat Mass Transf. vol. 36, no. 3, pp. 220–224, 2009. DOI: 10.1016/j.icheatmasstransfer.2008.11.010.
  • P. Kundu, V. Kumar, Y. Hoarau and I. M. Mishra, “Numerical simulation and analysis of fluid flow hydrodynamics through a structured array of circular cylinders forming porous medium,” Appl. Math. Model., vol. 40, no. 23–24, pp. 9848–9871, 2016. DOI: 10.1016/j.apm.2016.06.043.
  • S. Meinicke, T. Wetzel and B. Dietrich, “Scale-resolved CFD modelling of single-phase hydrodynamics and conjugate heat transfer in solid sponges,” Int. J. Heat Mass Transf., vol. 108, pp. 1207–1219, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.12.052.
  • L. Giani, G. Groppi and E. Tronconi, “Heat transfer characterization of metallic foams,” Ind. Eng. Chem. Res., vol. 44, no. 24, pp. 9078–9085, 2005. DOI: 10.1021/ie050598p.
  • Z. Pozorski, “Numerical modelling of the rigid polyurethane foam microstructure,” MATEC Web Conf., vol. 157, pp. 06008, 2018. DOI: 10.1051/matecconf/201815706008.
  • K. C. Leong and H. Y. Li, “Theoretical study of the effective thermal conductivity of graphite foam based on a unit cell model,” Int. J. Heat Mass Transf., vol. 54, no. 25-26, pp. 5491–5496, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.07.042.
  • L. James, S. Austin, C. A. Moore, D. Stephens, K. K. Walsh and G. Dale Wesson, “Modeling the principle physical parameters of graphite carbon foam,” Carbon, vol. 48, no. 9, pp. 2418–2424, 2010. DOI: 10.1016/j.carbon.2010.02.043.
  • A. A. Mahmoud, E. A. A. Nasr and A. A. H. Maamoun, “The influence of polyurethane foam on the insulation characteristics of mortar pastes,” JMMCE, vol. 05, no. 02, pp. 49–61, 2017. DOI: 10.4236/jmmce.2017.52005.
  • v Šmilauer, et al., “Yade documentation 3rd Ed. The Yade project,” DOI: 10.5281/zenodo.5705394.(http://yade-dem.org/doc/)2021.
  • ANSYS (2021R1). “ANSYS CFX,” ANSYS Workbench
  • D. Kumar and D. Kumar, “Dust Control,” in Sustainable Management of Coal Preparation, Cambridge, MA: Elsevier, 2018, pp. 265–278. DOI: 10.1016/B978-0-12-812632-5.00012-4.
  • S. Zhou, et al., “Vertical distribution of atmospheric particulate matters within urban boundary layer in southern China: size-segregated chemical composition and secondary formation through cloud processing and heterogeneous reactions,” Atmos. Chem. Phys., vol. 20, no. 11, pp. 6435–6453, 2020. DOI: 10.5194/acp-2019-155.
  • A. Story., “Female Head Geometry,” grabcad.com, Nov. 16, 2020.
  • A. Khosronejad, S. Kang, F. Wermelinger, P. Koumoutsakos and F. Sotiropoulos, “A computational study of expiratory particle transport and vortex dynamics during breathing with and without face masks,” Phys. Fluids, vol. 33, no. 6: 066605, 2021. DOI: 10.1063/5.0054204.
  • J. B. Forsyth, T. L. Martin, D. Young-Corbett and E. Dorsa, “Feasibility of intelligent monitoring of construction workers for carbon monoxide poisoning,” IEEE Trans. Automat. Sci. Eng., vol. 9, no. 3, pp. 505–515, 2012. DOI: 10.1109/TASE.2012.2197390.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.