22
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Similitude laws for dynamic response of beam-plate coupled structure

, , &

References

  • F. He, Z. Luo, H. Shi, C. Yu and L. Li, “The vibroacoustic characteristic of beam-plate coupled structure in similitude,” J. Vibrat. Control., 2024. DOI: 10.1177/10775463241226866.
  • A. Casaburo, G. Petrone, F. Franco and S. De Rosa, “A review of similitude methods for structural engineering,” Appl. Mech. Rev., vol. 71, no. 3, pp. 030802, 2019. DOI: 10.1115/1.4043787.
  • A. Casaburo, G. Petrone, F. Franco and S. De Rosa, “Similitude theory applied to plates in vibroacoustic field: a review up to 2020,” Prog. Scale Model. Int. J., vol. 1, no. 1, Article 3, 2020. DOI: 10.13023/psmij.2020.03.
  • F. X. He, Z. Luo, L. Li, Y. Q. Zhang and S. W. Guo, “Structural similitudes for the vibration characteristics of concave thin-walled conical shell,” Thin Wall. Struct., vol. 159, no. 5, pp. 107218, 2021. DOI: 10.1016/j.tws.2020.107218.
  • L. Li, Z. Luo, F. X. He, K. Sun and X. L. Yan, “An improved partial similitude method for dynamic characteristic of rotor systems based on Levenberg–Marquardt method,” Mech. Syst. Signal Process., vol. 165, pp. 108405, 2022. DOI: 10.1016/j.ymssp.2021.108405.
  • J. Rezaeepazhand, G. J. Simitses, J. Rezaeepazhand and G. J. Simitses, “Use of scaled-down models for predicting vibration response of laminated plates,” Compos. Struct., vol. 30, no. 4, pp. 419–426, 1995. DOI: 10.1016/0263-8223(94)00064-6.
  • J. Rezaeepazhand and A. A. Yazdi, “Similitude requirements and scaling laws for flutter prediction of angle-ply composite plates,” Compos. Part B Eng., vol. 42, no. 1, pp. 51–56, 2011. DOI: 10.1016/j.compositesb.2010.09.010.
  • P. Singhatanadgid and A. N. Songkhla, “An experimental investigation into the use of scaling laws for predicting vibration responses of rectangular thin plates,” J. Sound Vib., vol. 311, no. 1-2, pp. 314–327, 2008. DOI: 10.1016/j.jsv.2007.09.006.
  • S. De Rosa, F. Franco and T. Polito, “Structural similitudes for the dynamic response of plates and assemblies of plates,” Mech. Syst. Signal Process., vol. 25, no. 3, pp. 969–980, 2011. DOI: 10.1016/j.ymssp.2010.10.004.
  • S. De Rosa, F. Franco, X. Li and T. Polito, “A similitude for structural acoustic enclosures,” Mech. Syst. Signal Process., vol. 30, pp. 330–342, 2012. DOI: 10.1016/j.ymssp.2012.01.018.
  • S. De Rosa, F. Franco and V. Meruane, “Similitudes for the structural response of flexural plates,” Proc. Instit. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 230, no. 2, pp. 174–188, 2016. DOI: 10.1177/0954406215572436.
  • C. Adams, J. Bos, E. M. Slomski and T. Melz, “Scaling laws obtained from a sensitivity analysis and applied to thin vibrating structures,” Mech. System Signal Process., vol. 110, pp. 590–610, 2018. DOI: 10.1016/j.ymssp.2018.03.032.
  • Z. Luo, Y. P. Zhu, X. Y. Zhao and D. Y. Wang, “Determining Dynamic Scaling Laws of Geometrically Distorted Scaled Models of a Cantilever Plate,” J. Eng. Mech, vol. 142, no. 4, pp. 04015108, 2016. DOI: 10.1061/(ASCE)EM.1943-7889.0001028.
  • Y. Zhu, Y. Wang, Z. Luo, Q. Han and D. Wang, “Similitude design for the vibration problems of plates and shells: a review,” Front. Mech. Eng., vol. 12, no. 2, pp. 253–264, 2017. DOI: 10.1007/s11465-017-0418-1.
  • C. You, M. Yasaee and I. Dayyani, “Structural similitude design for a scaled composite wing box based on optimised stacking sequence,” Compos. Struct., vol. 226, pp. 111255, 2019. DOI: 10.1016/j.compstruct.2019.111255.
  • A. A. Yazdi and J. Rezaeepazhand, “Structural similitude for flutter of delaminated composite beam-plates,” Compos. Struct., vol. 93, no. 7, pp. 1918–1922, 2011. DOI: 10.1016/j.compstruct.2011.02.004.
  • A. P. Christoforou and A. S. Yigit, “Scaling of low-velocity impact response in composite structures,” Compos. Struct., vol. 91, no. 3, pp. 358–365, 2009. DOI: 10.1016/j.compstruct.2009.06.002.
  • A. P. Christoforou, A. S. Yigit, W. J. Cantwell and F. J. Yang, “Impact response characterization in composite plates—experimental validation,” Appl. Compos. Mater., vol. 17, no. 5, pp. 463–472, 2010. DOI: 10.1007/s10443-010-9140-4.
  • L. L. Zhou, “Similitude analysis of free vibration of functionally graded material cylinders under thermal environment,” Mech. Syst. Signal Process., vol. 170, pp. 108821, 2022. DOI: 10.1016/j.ymssp.2022.108821.
  • L. L. Zhou, “A novel similitude method for predicting natural frequency of FG porous plates under thermal environment,” Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 6786–6802, 2021. DOI: 10.1080/15376494.2021.1985197.
  • A. Casaburo, G. Petrone, V. Meruane, F. Franco and S. D. Rosa, “The vibroacoustic behaviour of aluminum foam sandwich panels in similitude,” J. Sandwich Struct. Mater., vol. 23, no. 8, pp. 4170–4195, 2021. DOI: 10.1177/1099636220986759.
  • Y. B. Ma, Y. H. Zhang and D. Kennedy, “A hybrid wave propagation and statistical energy analysis on the mid-frequency vibration of built-up plate systems,” J. Sound Vib., vol. 352, no. 11, pp. 63–79, 2015. DOI: 10.1016/j.jsv.2015.05.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.