3,072
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Effects of citrulline on endurance performance in young healthy adults: a systematic review and meta-analysis

ORCID Icon, &
Article: 2209056 | Received 30 Jun 2022, Accepted 09 Mar 2023, Published online: 08 May 2023

References

  • Patel K. Citrulline Examine.com 2019.
  • Rabier D, KamounP. Metabolism of citrulline in man. Amino Acids. 1995;9(4):299–337.
  • Wu G, Morris SM. Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(1):1–17.
  • Dhanakoti SN, Brosnan JT, HerzbergGR, et al. Renal arginine synthesis: studies in vitro and in vivo. Am J Physiol Endocrinol Metab. 1990;259(3):437.
  • Schwedhelm E, Maas R, Freese R, et al. Pharmacokinetic and pharmacodynamic properties of oral L‐citrulline and L‐arginine: impact on nitric oxide metabolism. Br J Clin Pharmacol. 2008;65(1):51–59. DOI:10.1111/j.1365-2125.2007.02990.x
  • Sureda A, Córdova A, Ferrer MD, et al. L-citrulline-malate influence over branched chain amino acid utilization during exercise. Eur J Appl Physiol. 2010;110(2):341–351. DOI:10.1007/s00421-010-1509-4
  • Sureda A, Cordova A, Ferrer MD, et al. Effects of L-citrulline oral supplementation on polymorphonuclear neutrophils oxidative burst and nitric oxide production after exercise. Free Radic Res. 2009;43(9):828–835. DOI:10.1080/10715760903071664
  • van de Poll MCG, Siroen MPC, van Leeuwen PAM, et al. Interorgan amino acid exchange in humans: consequences for arginine and citrulline metabolism. Am J Clin Nutr. 2007;85(1):167. DOI:10.1093/ajcn/85.1.167
  • Curis E, NicolisI, Moinard C, et al. Almost all about citrulline in mammals. Amino Acids. 2005;29(3):177–205. DOI:10.1007/s00726-005-0235-4
  • Allerton TD, Proctor DN, Stephens JM, et al. L-Citrulline supplementation: impact on cardiometabolic health. Nutrients. 2018;10(7):921.
  • Bassett RD. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1): 70-. DOI:10.1097/00005768-200001000-00012.
  • Burtscher M. Exercise limitations by the oxygen delivery and utilization systems in aging and disease: coordinated adaptation and deadaptation of the lung-heart muscle axis - a mini-review. Gerontology. 2013;59(4):289–296.
  • Bailey SJ, Winyard P, Vanhatalo A, et al. Dietary nitrate supplementation reduces the O 2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107(4):1144–1155. DOI:10.1152/japplphysiol.00722.2009
  • Xu F, Rhodes EC. Oxygen uptake kinetics during exercise. Sports Med. 1999;27(5):313–327.
  • Ashley J, Kim Y, Gonzales JU. Impact of l-citrulline supplementation on oxygen uptake kinetics during walking. Appl Physiol Nutr Metab Appl Physiol Nutr Me. 2018;43(6):631–637.
  • Bailey SJ, Blackwell JR, Lord T, et al. L-Citrulline supplementation improves O2 uptake kinetics and high-intensity exercise performance in humans. J Appl Physiol. 2015;119(4):385–395.
  • Martínez-Sánchez A, Ramos-Campo DJ, Fernández-Lobato B, et al. Biochemical, physiological, and performance response of a functional watermelon juice enriched in L-citrulline during a half-marathon race. Food Nutr Res. 2017;61(1): N.PAG-N.PAG. DOI:10.1080/16546628.2017.1330098.
  • Shu C, Yoshihiko M, Takahiro H, et al. Involvement of ammonia metabolism in the improvement of endurance performance by tea catechins in mice. Sci Rep. 2020;10(1):1–13.
  • Hellsten Y, Richter E, Kiens B, et al. AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. J Physiol-London. 1999;520(3):909–920.
  • Mutch JCB, Banister WE. Ammonia metabolism in exercise and fatigue: a review. Med Sci Sports Exerc. 1983;15(1):41–50.
  • Bendahan D, Mattei JP, Ghattas B, et al. Citrulline/Malate promotes aerobic energy production in human exercising muscle. Br J Sports Med. 2002;36(4):282.
  • Kiyici F, Eroglu H, Kishali NF, et al. The effect of citrulline/malate on blood lactate levels in intensive exercise. Biochem Genet. 2017;55(5–6):387–394.
  • Cunniffe B, Papageorgiou M, O’Brien B, et al. Acute citrulline-malate supplementation and high-intensity cycling performance. J Strength Cond Res. 2016;30(9):2638–2647.
  • Cutrufello PT, Gadomski SJ, Zavorsky GS. The effect of l-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. J Sports Sci. 2015;33(14):1459–1466.
  • Wax B, Kavazis AN, Luckett W. Effects of supplemental citrulline-malate ingestion on blood lactate, cardiovascular dynamics, and resistance exercise performance in trained males. J Diet Suppl. 2016;13(3):269–282.
  • Thomas C, Sirvent P, Perrey S, et al. Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humans. J Appl Physiol. 2004;97(6):2132–2138.
  • Trexler E, Persky A, Ryan E, et al. Acute effects of citrulline supplementation on high-intensity strength and power performance: a systematic review and meta-analysis. Sports Med. 2019;49(5):707–718.
  • Vårvik F, Bjørnson T, Gonzalez A. Acute effect of citrulline malate on repetition performance during strength training: a systematic review and meta-analysis strength training: a systematic review and meta-analysis. Int J Sport Nutr Exerc Metab. 2021;31(4):350–358.
  • Chamari K, Padulo J. ‘Aerobic’ and ‘Anaerobic’ terms used in exercise physiology: a critical terminology reflection. Sports Med Open. 2015;1(1). DOI:10.1186/s40798-015-0012-1
  • Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):35–44.
  • Hickner RC, TANNER CJ, EVANS CA. L-citrulline reduces time to exhaustion and insulin response to a graded exercise test. Med Sci Sports Exerc. 2006;38(4):660.
  • Gonzalez A, Trexler E. Effects of citrulline supplementation on exercise performance in humans: a review of the current literature. J Strength Cond Res. 2020;34(5):1480–1495.
  • Fernández-Hernández A, Casals-Vázquez C. L-citrulina Y su efecto en deportes de resistencia, una revisión sistemática./l-citrulline and its effect in endurance sports, a systematic review. J Sport Health Res. 2019;11(3):227–240.
  • Cheng I, Wang Y, Chen I, et al. The supplementation of branched-chain amino acids, arginine, and citrulline improves endurance exercise performance in two consecutive days. J Sports Sci Med. 2016;15(3):509–515.
  • Shanely R, Nieman DC, Perkins-Veazie P, et al. Comparison of watermelon and carbohydrate beverage on exercise-induced alterations in systemic inflammation, immune dysfunction, and plasma antioxidant capacity. Nutrients. 2016;8(8):518. DOI:10.3390/nu8080518
  • Stanelle ST, McLaughlin KL, Crouse SF. One week of L-Citrulline supplementation improves performance in trained cyclists. J Strength Cond Res (Lippincott Williams & Wilkins). 2020;34(3):647–652.
  • Gills JL, Glenn JM, Gray M, et al. Acute citrulline-malate supplementation is ineffective during aerobic cycling and subsequent anaerobic performance in recreationally active males. Eur J Sport Sci. 2020;21(1):77–83. ahead-of-print(ahead-of-print). DOI:10.1080/17461391.2020.1722757.
  • Higgins J, Savović J, Page M, et al. Chapter 8: assessing risk of bias in a randomized trial. 2019. In: Cochrane Handbook for Systematic Reviews of Interventions version 60 [Internet]. Cochrane Training. Available from: www.training.cochrane.org/handbook.
  • Higgins JPT, Thomas J, Chandler J, et al., editor. Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK): John Wiley & Sons, 2019.
  • Barde P, Barde M. What to use to express the variability of data: standard deviation or standard error of mean? Perspect Clin Res. 2012;3(3):113–116.
  • Coakley SL, Passfield L. Cycling performance is superior for time-to-exhaustion versus time-trial in endurance laboratory tests. J Sports Sci. 2018;36(11):1228–1234.
  • Laursen P, Francis G, Abbis C, et al. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med Sci Sports Exercise. 2007;39(8):1374–1379.
  • Karsten B, Baker J, Naclerio F, et al. Time trials versus time to exhaustion tests: effects on critical power, W’ and oxygen uptake kinetics. Int J Sports Physiol Perform. 2018;13(2):183–188.
  • McKenzie JE, Brennan SE, Ryan RE, et al. Chapter 9: Summarizing study characteristics and preparing for synthesis. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). New York: Cochrane, 2022.
  • McKenzie J, Brennan S, Ryan R, et al. Chapter 9: summarizing study characteristics and preparing for synthesis. In: Higgins J; Thomas J; Chandler J; Cumpston M; Li T Page M, et al. editorseditors Cochrane handbook for systematic reviews of Interventions. version 60 (updated. July 2019, Cochrane. 2019
  • Higgins J, Thompson S, Deeks J, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560.
  • Takashi S, Masahiko M, Yoshinori K, et al. Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: double-blind randomized placebo-controlled 2-way crossover study. J Int Soc Sports Nutr. 2016;13(1):1–8.
  • Bailey SJ, Blackwell JR, Williams E, et al. Two weeks of watermelon juice supplementation improves nitric oxide bioavailability but not endurance exercise performance in humans. Nitric Oxide. 2016;59:10–20.
  • Gonzalez AM, Spitz RW, Ghigiarelli JJ, et al. Acute effect of citrulline malate supplementation on upper-body resistance exercise performance in recreationally resistance-trained men. J Strength Cond Res. 2018;32(11):3088–3094.
  • Bloomer RJ. Nitric oxide supplements for sports. J Strength Cond(Lippincott Williams & Wilkins). 2010;32(2):14–20.
  • Bloomer RJ, Williams SA, Canale RE, et al. Acute effect of nitric oxide supplement on blood nitrate/nitrite and hemodynamic variables in resistance trained men. J Strength Cond Res. 2010;24(10):2587–2592.
  • Denninger JW, Marletta MA. Guanylate cyclase and the ⋅NO/cGMP signaling pathway. BBA - Bioenergetics. 1999;1411(2):334–350.
  • Carvajal JA, Germain AM, Huidobro‐toro JP, et al. Molecular mechanism of cGMP‐mediated smooth muscle relaxation. J Cell Physiol. 2000;184(3):409–420.
  • Pérez-Guisado J, Jakeman P. Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. J Strength Cond Res. 2010;24(5):1215–1222.
  • Wax B, Kavazis AN, Weldon K, et al. Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise in advanced weightlifters. J Strength Cond Res. 2015;29(3):786–792.
  • Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev. 2015;95(2):549.
  • Bailey S, Vanhatalo A, Winyard P, et al. The nitrate-nitrite-nitric oxide pathway: its role in human exercise physiology. Eur J Sport Sci. 2012;12(4):309–320.
  • Lanham-New S, Stear S, Shirreffs S. Sports and Exercise Nutrition. Chichester: John Wiley & Sons; 2011.
  • Farney TM, Bliss MV, Hearon CM, et al. The effect of citrulline malate supplementation on muscle fatigue among healthy participants. J Strength Cond Res. 2019;33(9):2464–2470.
  • Baker JS, McCormick MC, Robergs RA. Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metab. 2010;2010:1–13.
  • Rhim H, Kim S, Park J, et al. Effect of citrulline on post-exercise rating of perceived exertion, muscle soreness, and blood lactate levels: a systematic review and meta-analysis. J Sport Health Sci. 2020;9(6):553–561.
  • Dwan K, Li T, Altman DG, et al. CONSORT 2010 statement: extension to randomised crossover trials. BMJ. 2019;366:l4378.
  • Knapik J, Steelman R, Hoedebecke S, et al. Prevalence of dietary supplement use by athletes: systematic review and meta-analysis. Sports Med. 2016;46(1):103–123.
  • Tarnopolsky MA. Gender differences in metabolism; nutrition and supplements. J Sci Med Sport. 2000;3(3):287–298.
  • Bescós R, Sureda A, Tur JA, et al. The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012;42(2):99–117.