2,139
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of pre-sleep protein supplementation on plasma markers of muscle damage and inflammatory cytokines resulting from sprint interval training in trained swimmers

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2244478 | Received 17 Apr 2023, Accepted 28 Jul 2023, Published online: 06 Aug 2023

References

  • Terzi, E, Skari, A, Nikolaidis, S, et al. Relevance of a sprint interval swim training set to the 100-meter freestyle event based on blood lactate and kinematic variables. J Hum Kinet. 2021;80:153–689. doi: 10.2478/hukin-2021-0091
  • Pinos, AJ, Bentley, DJ, Logan-Sprenger, HM. The effects of anaerobic swim ergometer training on sprint performance in adolescent swimmers. Int J Sports Physiol Perform. 2021;16(8):1169–1174. doi: 10.1123/ijspp.2020-0591
  • Kabasakalis, A, Nikolaidis, S, Tsalis, G, et al. Response of blood biomarkers to sprint interval swimming. Int J Sports Physiol Perform. 2020;15(10):1442–1447. doi: 10.1123/ijspp.2019-0747
  • MaCinnis, MJ, Gibala, MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915–2930. doi: 10.1113/JP273196
  • Ferreira, GA, Felippe, LC, Bertuzzi, R, et al. The effects of acute and chronic sprint-interval training on cytokine responses are independent of prior caffeine intake. Front Physiol. 2018;9:671. doi: 10.3389/fphys.2018.00671
  • Saracino, PG, Saylor, HE, Hanna, BR, et al. Effects of pre-sleep whey vs. plant-based protein consumption on muscle recovery following damaging morning exercise. Nutr. 2020;12(7):2049. doi: 10.3390/nu12072049
  • Markus, I, Constantini, K, Hoffman, JR, et al. Exercise-induced muscle damage: mechanism, assessment and nutritional factors to accelerate recovery. Eur J Appl Physiol. 2021;121(4):969–992. doi: 10.1007/s00421-020-04566-4
  • Cintineo, HP, Arent, MA, Antonio, J, et al. Effects of protein supplementation on performance and recovery in resistance and endurance training. Front Nutr. 2018;5:83. doi: 10.3389/fnut.2018.00083
  • Kreider, RB, Campbell, B. Protein for exercise and recovery. Phys Sportsmed. 2009;37(2):13–21. doi: 10.3810/psm.2009.06.1705
  • Larsen, MS, Clausen, D, Jørgensen, AA, et al. Presleep protein supplementation does not improve recovery during consecutive days of intense endurance training: a randomized controlled trial. Int J Sport Nutr Exercise Metab. 2019;29(4):426–434. doi: 10.1123/ijsnem.2018-0286
  • Hansen, M, Bangsbo, J, Jensen, J, et al. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners. Int J Sport Nutri Exer Metabol. 2015;25(2):97–109. doi: 10.1123/ijsnem.2014-0083
  • Witard, OC, Turner, JE, Jackman, SR, et al. High dietary protein restores overreaching induced impairments in leukocyte trafficking and reduces the incidence of upper respiratory tract infection in elite cyclists. Brain Behav Immun. 2014;39:211–219. doi: 10.1016/j.bbi.2013.10.002
  • Trommelen, J, Kouw, IWK, Holwerda, AM, et al. Presleep dietary protein-derived amino acids are incorporated in myofibrillar protein during postexercise overnight recovery. Am J Physiol Endocrinol Metab. 2018;314(5):E457–E467. doi: 10.1152/ajpendo.00273.2016
  • Groen, BB, Res, PT, Pennings, B, et al. Intragastric protein administration stimulates overnight muscle protein synthesis in elderly men. Am J Physiol Endocrinol Metab. 2012;302(1):E52–60. doi: 10.1152/ajpendo.00321.2011
  • Kritikos, S, Papanikolaou, K, d, D, et al. Effect of whey vs. soy protein supplementation on recovery kinetics following speed endurance training in competitive male soccer players: a randomized controlled trial. J Int Soc Sports Nutr. 2021;18(1):23. doi: 10.1186/s12970-021-00420-w
  • Valenzuela, PL, Alejo, LB, Montalvo-Pérez, A, et al. Pre-sleep protein supplementation in professional cyclists during a training camp: a three-arm randomized controlled trial. J Int Soc Sports Nutr. 2023;20(1):2166366. doi: 10.1080/15502783.2023.2166366
  • Abbott, W, Brett, A, Cockburn, E, et al. Pre-sleep casein protein ingestion: acceleration of functional recovery in professional soccer players. Int J Sports Physiol Perform. 2019;14(3):385–391. doi: 10.1123/ijspp.2018-0385
  • Snijders, T, Trommelen, J, Kouw, IWK, et al. The impact of pre-sleep protein ingestion on the skeletal muscle adaptive response to exercise in humans: an update. Front Nutr. 2019;6:17. doi: 10.3389/fnut.2019.00017
  • Res, PT, Groen, B, Pennings, B, et al. Protein ingestion before sleep improves postexercise overnight recovery. Med Sci Sports Exer. 2012;44(8):1560–1569. doi: 10.1249/MSS.0b013e31824cc363
  • Trommelen, J, van Lieshout, GAA, Pabla, P, et al. Pre-sleep protein ingestion increases mitochondrial protein synthesis rates during overnight recovery from endurance exercise: a randomized controlled trial. Sports Med. 2023;53(7):1445–1455. doi: 10.1007/s40279-023-01822-3
  • McKay, AKA, Stellingwerff, T, Smith, ES, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317–331. doi: 10.1123/ijspp.2021-0451
  • Sheykhlouvand, M, Arazi, H, Astorino, TA, et al. Effects of a new form of resistance-type high-intensity interval training on cardiac structure, hemodynamics, and physiological and performance adaptations in well-trained kayak sprint athletes. Front Physiol. 2022;13:850768. doi: 10.3389/fphys.2022.850768
  • Fereshtian, S, Sheykhlouvand, M, Forbes, S, et al. Physiological and performance responses to high-intensity interval training in female inline speed skaters. Apunts Medicina de l’Esport. 2017;52(196):131–138. doi: 10.1016/j.apunts.2017.06.003
  • Cuenca-Fernández, F, Boullosa, D, López-Belmonte, Ó, et al. Swimming warm-up and beyond: dryland protocols and their related mechanisms-a scoping review. Sports Med Open. 2012;8(1):120. doi: 10.1186/s40798-022-00514-y
  • Ronnestad, BR, Hansen, J, Vegge, G, et al. Short intervals induce superior training adaptations compared with long intervals in cyclists - an effort-matched approach. Scand J Med Sci Sports. 2015;25(2):143–151. doi: 10.1111/sms.12165
  • Nösslinger, H, Mair, E, Toplak, H, et al. Underestimation of resting metabolic rate using equations compared to indirect calorimetry in normal-weight subjects: consideration of resting metabolic rate as a function of body composition. Clin Nutr Open Sci. 2021;35:48–66. doi: 10.1016/j.nutos.2021.01.003
  • Mamerow, MM, Mettler, JA, English, KL, et al. Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. J Nutr. 2014;144(6):876–880. doi: 10.3945/jn.113.185280
  • Trommelen, J, van Loon, LJC. Pre-sleep protein ingestion to improve the skeletal muscle adaptive response to exercise training. Nutr. 2016;8(12):763. doi: 10.3390/nu8120763
  • Faul, F, Erdfelder, E, Lang, AG, et al. G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–191. doi: 10.3758/BF03193146
  • Thomson, JS, Ali, A, Rowlands, DS. Leucine-protein supplemented recovery feeding enhances subsequent cycling performance in well-trained men. Appl Physiol Nutr Metab. 2011;36(2):242–253. doi: 10.1139/h10-104
  • Ormsbee, MJ, Saracino, PG, Morrissey, MC, et al. Pre-sleep protein supplementation after an acute bout of evening resistance exercise does not improve next day performance or recovery in resistance trained men. J Int Soc Sports Nutr. 2022;19(1):164–178. doi: 10.1080/15502783.2022.2036451
  • Levenhagen, DK, Gresham, JD, Carlson, MG, et al. Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab. 2001;280(6):E982–993. doi: 10.1152/ajpendo.2001.280.6.E982
  • Gerosa-Neto, J, Monteiro, PA, Inoue, DS, et al. High- and moderate-intensity training modify LPS-induced ex-vivo interleukin-10 production in obese men in response to an acute exercise bout. Cytokine. 2020;136:155249. doi: 10.1016/j.cyto.2020.155249
  • Pedersen, BK. Muscular interleukin-6 and its role as an energy sensor. Med Sci Sports Exercise. 2012;44(3):392–396. doi: 10.1249/MSS.0b013e31822f94ac
  • Pedersen, BK, Febbraio, MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–1406. doi: 10.1152/physrev.90100.2007
  • Croft, L, Bartlett, JD, Maclaren, DP, et al. High-intensity interval training attenuates the exercise-induced increase in plasma IL-6 in response to acute exercise. Appl Physiol Nutr Metab. 2009;34(6):1098–1107. doi: 10.1139/H09-117
  • Petersen, AM, Pedersen, BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):1154–1162. doi: 10.1152/japplphysiol.00164.2004
  • da Costa Santos, VB, Ruiz, RJ, Vettorato, ED, et al. Effects of chronic caffeine intake and low-intensity exercise on skeletal muscle of Wistar rats. Exp Physiol. 2011;96(11):1228–1238. doi: 10.1113/expphysiol.2011.060483
  • Rodas, G, Ventura, JL, Cadefau, JA, et al. A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol. 2000;82(5–6):480–486. doi: 10.1007/s004210000223
  • Martinez-Valdes, E, Falla, D, Negro, F, et al. Differential motor unit changes after endurance or high-intensity interval training. Med Sci Sports Exercise. 2017;49(6):1126–1136. doi: 10.1249/MSS.0000000000001209