0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Role of Telomere Length in Radiation Response of Hematopoietic Stem & Progenitor Cells in Newborns

, , &
Received 05 Apr 2024, Accepted 08 Jul 2024, Published online: 06 Aug 2024

References

  • Nakahata T, Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest. 1982;70(6):1324–8. doi:10.1172/jci110734.
  • Kadhim MA, Wright EG. Radiation-induced transmissible chromosomal instability in haemopoietic stem cells. Adv Space Res. 1998;22(4):587–96. doi:10.1016/s0273-1177(98)00081-7.
  • Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal. 2014;20(9):1447–62. doi:10.1089/ars.2013.5635.
  • Hayashi T, Hayashi I, Shinohara T, Morishita Y, Nagamura H, Kusunoki Y, Kyoizumi S, Seyama T, Nakachi K. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH. Mutat Res. 2004;556(1-2):83–91. doi:10.1016/j.mrfmmm.2004.07.002.
  • Becker D, Elsässer T, Tonn T, Seifried E, Durante M, Ritter S, Fournier C. Response of human hematopoietic stem and progenitor cells to energetic carbon ions. Int J Radiat Biol. 2009;85(11):1051–9. doi:10.3109/09553000903232850.
  • Kato K, Takahashi K, Monzen S, Yamamoto H, Maruyama A, Itoh K, Kashiwakura I. Relationship between radiosensitivity and Nrf2 target gene expression in human hematopoietic stem cells. Radiat Res. 2010;174(2):177–84. doi:10.1667/RR2146.1.
  • Sato Y, Yoshino H, Ishikawa J, Monzen S, Yamaguchi M, Kashiwakura I. Prediction of hub genes and key pathways associated with the radiation response of human hematopoietic stem/progenitor cells using integrated bioinformatics methods. Sci Rep. 2023;13(1):10762. doi:10.1038/s41598-023-37981-6.
  • Omori A, Chiba T, Kashiwakura I. Relationship between radiosensitivity of human neonatal hematopoietic stem/progenitor cells and individual maternal/neonatal obstetric factors. J Radiat Res. 2010;51(6):755–63. doi:10.1269/jrr.10115.
  • Moreno-Palomo J, Creus A, Marcos R, Hernández A. Genomic instability in newborn with short telomeres. PLoS One. 2014;9(3):e91753. doi:10.1371/journal.pone.0091753.
  • de Lange T. How telomeres solve the end-protection problem. Science. 2009;326(5955):948–52. doi:10.1126/science.1170633.
  • Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA. 1994;91(21):9857–60. doi:10.1073/pnas.91.21.9857.
  • Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW, Raap AK, Tanke HJ. Heterogeneity in telomere length of human chromosomes. Hum Mol Genet. 1996;5(5):685–91. doi:10.1093/hmg/5.5.685.
  • Baerlocher GM, Roth A, Lansdorp PM. Telomeres in hematopoietic stem cells. Ann N Y Acad Sci. 2003;996(1):44–8. doi:10.1111/j.1749-6632.2003.tb03231.x.
  • Castella M, Puerto S, Creus A, Marcos R, Surralles J. Telomere length modulates human radiation sensitivity in vitro. Toxicol Lett. 2007;172(1-2):29–36. doi:10.1016/j.toxlet.2007.05.012.
  • Wong KK, Chang S, Weiler SR, Ganesan S, Chaudhuri J, Zhu C, Artandi SE, Rudolph KL, Gottlieb GJ, Chin L, et al. Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet. 2000;26(1):85–8. doi:10.1038/79232.
  • Goytisolo FA, Samper E, Martín-Caballero J, Finnon P, Herrera E, Flores JM, Bouffler SD, Blasco MA. Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J Exp Med. 2000;192(11):1625–36. doi:10.1084/jem.192.11.1625.
  • Latre L, Tusell L, Martin M, Miró R, Egozcue J, Blasco MA, Genescà A. Shortened telomeres join to DNA breaks interfering with their correct repair. Exp Cell Res. 2003;287(2):282–8. doi:10.1016/s0014-4827(03)00134-4.
  • Bakhmutsky MV, Joiner MC, Jones TB, Tucker JD. Differences in cytogenetic sensitivity to ionizing radiation in newborns and adults. Radiat Res. 2014;181(6):605–16. doi:10.1667/RR13598.1.
  • McIlrath J, Bouffler SD, Samper E, Cuthbert A, Wojcik A, Szumiel I, Bryant PE, Riches AC, Thompson A, Blasco MA, et al. Telomere length abnormalities in mammalian radiosensitive cells. Cancer Res. 2001;61(3):912–5.
  • Maeda T, Nakamura K, Atsumi K, Hirakawa M, Ueda Y, Makino N. Radiation-associated changes in the length of telomeres in peripheral leukocytes from inpatients with cancer. Int J Radiat Biol. 2013;89(2):106–9. doi:10.3109/09553002.2013.734945.
  • Sharma GG, Hall EJ, Dhar S, Gupta A, Rao PH, Pandita TK. Telomere stability correlates with longevity of human beings exposed to ionizing radiations. Oncol Rep. 2003;10(6):1733–6.
  • Schüz J, Deltour I, Krestinina LY, Tsareva YV, Tolstykh EI, Sokolnikov ME, Akleyev AV. In utero exposure to radiation and haematological malignancies: pooled analysis of Southern Urals cohorts. Br J Cancer. 2017;116(1):126–33. doi:10.1038/bjc.2016.373.
  • Wakeford R. Childhood leukaemia following medical diagnostic exposure to ionizing radiation in utero or after birth. Radiat Prot Dosimetry. 2008;132(2):166–74. doi:10.1093/rpd/ncn272.
  • Frush DP, Donnelly LF, Rosen NS. Computed tomography and radiation risks: what pediatric health care providers should know. Pediatrics. 2003;112(4):951–7. doi:10.1542/peds.112.4.951.
  • Oriya A, Takahashi K, Inanami O, Miura T, Abe Y, Kuwabara M, Kashiwakura I. Individual differences in the radiosensitivity of hematopoietic progenitor cells detected in steady-state human peripheral blood. J Radiat Res. 2008;49(2):113–21. doi:10.1269/jrr.07079.
  • Takahashi K, Monzen S, Hayashi N, Kashiwakura I. Correlations of cell surface antigens with individual differences in radiosensitivity in human hematopoietic stem/progenitor cells. Radiat Res. 2010;173(2):184–90. doi:10.1667/RR1839.1.
  • Bhaumik P, Bhattacharya M, Ghosh P, Ghosh S, Kumar Dey S. Telomere length analysis in Down syndrome birth. Mech Ageing Dev. 2017;164:20–6. doi:10.1016/j.mad.2017.03.006.
  • Bhattacharya M, Bhaumik P, Ghosh P, Majumder P, Kumar Dey S. Telomere length inheritance and shortening in trisomy 21. Fetal Pediatr Pathol. 2020;39(5):390–400. doi:10.1080/15513815.2019.1661049.
  • Vandevoorde C, Vral A, Vandekerckhove B, Philippé J, Thierens H. Radiation sensitivity of human CD34(+) cells versus peripheral blood T lymphocytes of newborns and adults: DNA repair and mutagenic effects. Radiat Res. 2016;185(6):580–90. doi:10.1667/RR14109.1.
  • Meijne EI, van der Winden-van Groenewegen RJ, Ploemacher RE, Vos O, David JA, Huiskamp R. The effects of x-irradiation on hematopoietic stem cell compartments in the mouse. Exp Hematol. 1991;19(7):617–23.
  • Katoh O, Tauchi H, Kawaishi K, Kimura A, Satow Y. Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res. 1995;55(23):5687–92.
  • Monzen S, Tashiro E, Kashiwakura I. Megakaryocytopoiesis and thrombopoiesis in hematopoietic stem cells exposed to ionizing radiation. Radiat Res. 2011;176(6):716–24. doi:10.1667/rr2725.1.
  • Frenck RW, Jr, Blackburn EH, Shannon KM. The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci USA. 1998;95(10):5607–10. doi:10.1073/pnas.95.10.5607.
  • Entringer S, Epel ES, Lin J, Buss C, Shahbaba B, Blackburn EH, Simhan HN, Wadhwa PD. Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. Am J Obstet Gynecol. 2013;208(2):134.e1–134.e7. doi:10.1016/j.ajog.2012.11.033.
  • Njajou OT, Cawthon RM, Damcott CM, Wu SH, Ott S, Garant MJ, Blackburn EH, Mitchell BD, Shuldiner AR, Hsueh WC. Telomere length is paternally inherited and is associated with parental lifespan. Proc Natl Acad Sci USA. 2007;104(29):12135–9. doi:10.1073/pnas.0702703104.
  • Bartolović K, Balabanov S, Berner B, Bühring HJ, Komor M, Becker S, Hoelzer D, Kanz L, Hofmann WK, Brümmendorf TH. Clonal heterogeneity in growth kinetics of CD34 + CD38- human cord blood cells in vitro is correlated with gene expression pattern and telomere length. Stem Cells. 2005;23(7):946–57. doi:10.1634/stemcells.2004-0311.
  • Schuller CE, Jankowski K, Mackenzie KL. Telomere length of cord blood-derived CD34(+) progenitors predicts erythroid proliferative potential. Leukemia. 2007;21(5):983–91. doi:10.1038/sj.leu.2404631.
  • Drissi R, Wu J, Hu Y, Bockhold C, Dome JS. Telomere shortening alters the kinetics of the DNA damage response after ionizing radiation in human cells. Cancer Prev Res (Phila). 2011;4(12):1973–81. Epub 2011 Sep 19. PMID: 21930799; PMCID: PMC3232288. doi:10.1158/1940-6207.CAPR-11-0069.
  • Sishc BJ, Nelson CB, McKenna MJ, Battaglia CL, Herndon A, Idate R, Liber HL, Bailey SM. Telomeres and telomerase in the radiation response: implications for instability, reprograming, and carcinogenesis. Front Oncol. 2015;5:257. doi:10.3389/fonc.2015.00257.
  • Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos JF. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun. 2012;3(1):708. doi:10.1038/ncomms1708.
  • Niedernhofer LJ. DNA repair is crucial for maintaining hematopoietic stem cell function. DNA Repair (Amst). 2008;7(3):523–9. doi:10.1016/j.dnarep.2007.11.012.
  • Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL, Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447(7145):725–9. doi:10.1038/nature05862.
  • Coluzzi E, Colamartino M, Cozzi R, Leone S, Meneghini C, O'Callaghan N, Sgura A. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS One. 2014;9(10):e110963. doi:10.1371/journal.pone.0110963.
  • Yamaguchi M, Kashiwakura I. Role of reactive oxygen species in the radiation response of human hematopoietic stem/progenitor cells. PLoS One. 2013;8(7):e70503. doi:10.1371/journal.pone.0070503.
  • Yahata T, Takanashi T, Muguruma Y, Ibrahim AA, Matsuzawa H, Uno T, Sheng Y, Onizuka M, Ito M, Kato S, et al. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood. 2011;118(11):2941–50. doi:10.1182/blood-2011-01-330050.
  • Milyavsky M, Gan OI, Trottier M, Komosa M, Tabach O, Notta F, Lechman E, Hermans KG, Eppert K, Konovalova Z, et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell. 2010;7(2):186–97. doi:10.1016/j.stem.2010.05.016.
  • Leteurtre F, Li X, Gluckman E, Carosella ED. Telomerase activity during the cell cycle and in gamma-irradiated hematopoietic cells. Leukemia. 1997;11(10):1681–9. doi:10.1038/sj.leu.2400784.
  • Aubert G, Baerlocher GM, Vulto I, Poon SS, Lansdorp PM. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet. 2012;8(5):e1002696. doi:10.1371/journal.pgen.1002696.
  • Engelhardt M, Kumar R, Albanell J, Pettengell R, Han W, Moore MA. Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood. 1997;90(1):182–93. doi:10.1182/blood.V90.1.182.
  • Wang JC, Warner JK, Erdmann N, Lansdorp PM, Harrington L, Dick JE. Dissociation of telomerase activity and telomere length maintenance in primitive human hematopoietic cells. Proc Natl Acad Sci USA. 2005;102(40):14398–403. doi:10.1073/pnas.0504161102.
  • Broccoli D, Young JW, de Lange T. Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci USA. 1995;92(20):9082–6. doi:10.1073/pnas.92.20.9082.
  • Zimmermann S, Glaser S, Ketteler R, Waller CF, Klingmüller U, Martens UM. Effects of telomerase modulation in human hematopoietic progenitor cells. Stem Cells. 2004;22(5):741–9. doi:10.1634/stemcells.22-5-741.
  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources, effects and risks of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2013 Report to the General Assembly with Scientific Annexes; Cienna, Austria: UNSCEAR; 2013.
  • Karlsson P, Holmberg E, Lundell M, Mattsson A, Holm LE, Wallgren A. Intracranial tumors after exposure to ionizing radiation during infancy: a pooled analysis of two Swedish cohorts of 28,008 infants with skin hemangioma. Radiat Res. 1998;150(3):357–64. doi:10.2307/3579984.
  • Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289–96. doi:10.2214/ajr.176.2.1760289.
  • Shim G, Ricoul M, Hempel WM, Azzam EI, Sabatier L. Crosstalk between telomere maintenance and radiation effects: a key player in the process of radiation-induced carcinogenesis. Mutat Res Rev Mutat Res. 2014;S1383-5742(14):00002–7. doi:10.1016/j.mrrev.2014.01.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.