113
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A Novel Light Harvesting System: Synthesis, Characterization, and Photophysical Properties of Covalently Porphyrin-Modified Single-Walled Carbon Nanotubes

, , , , , & show all
Pages 553-561 | Received 20 Nov 2007, Accepted 23 Mar 2008, Published online: 04 Sep 2008

REFERENCES

  • Iijima , S. and Ichihashi , T. 1993 . Single-shell carbon nanotubes of 1-nm diameter . Nature , 363 : 603 – 605 .
  • Chen , Y. , Lin , Y. , Liu , Y. , Doyle , J. , He , N. , Zhuang , X. , Bai , J. and Blau , W. J. 2007 . Carbon nanotube-based functional materials for optical limiting . J. Nanosci. Nanotechnol. , 7 : 1268 – 1283 .
  • Saraiya , A. , Porwal , D. , Bajpai , A. N. , Tripathi , N. K. and Ram , K. 2006 . Investigation of carbon nanotubes as low temperature sensors . Synth. React. Inorg. Met.-Org. Nano-Metal Chem. , 36 : 163 – 164 .
  • Hino , T. , Ogawa , Y. and Kuramoto , N. 2006 . Dye-sensitized solar cell with single-walled carbon nanotube thin film prepared by an electrolytic micelle disruption method as the counterelectrode . Fuller. Nanotub. Carbon Nanostruct. , 14 : 607 – 619 .
  • Feazell , R. P. , Nakayama-Ratchford , N. , Dai , H. and Lippard , S. J. 2007 . Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design . J. Am. Chem. Soc. , 129 : 8438 – 8439 .
  • Yang , X. , Lu , Y. , Ma , Y. , Li , Y. , Du , F. and Chen , Y. 2006 . Noncovalent nanohybrid of ferrocene with single-walled carbon nanotubes and its enhanced electrochemical property . Chem. Phys. Lett. , 420 : 416 – 420 .
  • Ballesteros , B. , Campidelli , S. , de la Torre , G. , Ehli , C. , Guldi , D. M. , Prato , M. and Torres , T. 2007 . Synthesis, characterization and photophysical properties of a SWNT phthalocyanine hybrid . Chem. Comm , : 2950 – 2952 .
  • Martin , R. B. , Qu , L. , Lin , Y. , Harruff , B. A. , Bunker , C. E. , Gord , J. R. , Allard , L. F. and Sun , Y.-P. 2004 . Functionalized carbon nanotubes with tethered pyrenes: Synthesis and photophysical properties . J. Phys. Chem. B , 108 : 11447 – 11453 .
  • D'Souza , F. and Ito , O. 2005 . Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines . Coord. Chem. Rev. , 249 : 1410 – 1422 .
  • Wang , N. , Li , Y. , Lu , F. , Liu , Y. , He , X. , Jiang , L. , Zhuang , J. , Li , X. , Li , Y. , Wang , S. , Liu , H. and Zhu , D. 2005 . Fabrication of novel conjugated polymer nanostructure: porphyrins and fullerenes conjugately linked to the polyacetylene backbone as pendant groups . J. Polymer Sci. Polymer Chem. , 43 : 2851 – 2861 .
  • Ren , D. , Guo , Z. , Du , F. , Zheng , J. and Chen , Y. 2007 . A nanohybrid material of SWNTs covalently functionalized with porphyrin for light harvesting antenna: Synthesis and photophysical properties . J. Nanosci. Nanotechnol. , 7 : 1539 – 1545 . For covalent modification, see
  • Guo , Z. , Du , F. , Ren , D. , Chen , Y. , Zheng , J. , Liu , Z. and Tian , J. 2006 . Covalently porphyrin-functionalized single-walled carbon nanotubes: A novel photoactive and optical limiting donor–acceptor nanohybrid . J. Mater. Chem. , 16 : 3021 – 3030 .
  • Cheng , F. and Adronov , A. 2006 . Suzuki coupling reactions for the surface functionalization of single-walled carbon nanotubes . Chem. Mater. , 18 : 5389 – 5391 .
  • Campidelli , S. , Sooambar , C. , Lozano-Diz , E. , Ehli , C. , Guldi , D. M. and Prato , M. 2006 . Dendrimer-functionalized single-wall carbon nanotubes: Synthesis, characterization, and photoinduced electron transfer . J. Am. Chem. Soc. , 128 : 12544 – 12552 .
  • Baskaran , D. , Mays , J. W. , Zhang , X. P. and Bratcher , M. S. 2005 . Carbon nanotubes with covalently linked porphyrin antennae: Photoinduced electron transfer . J. Am. Chem. Soc. , 127 : 6916 – 6917 .
  • Li , H. , Martin , R. B. , Harruff , B. A. , Carino , R. A. , Allard , L. F. and Sun , Y. 2004 . Single-walled carbon nanotubes tethered with porphyrins: Synthesis and photophysical properties . Adv. Mater. , 16 : 896 – 900 .
  • Valentini , L. , Trentini , M. , Mengoni , F. , Alongi , J. , Armentano , I. , Ricco , L. , Mariani , A. and Kenny , J. M. 2007 . Synthesis and photoelectrical properties of carbon nanotube–dendritic porphyrin light harvesting molecule systems . Diam. Relat. Mater. , 16 : 658 – 663 . For noncovalent modification, see
  • Basiuk , E. V. , Basiuk , V. A. , Santiago , P. and Puente-Lee , I. 2007 . Noncovalent functionalization of carbon nanotubes with porphyrins: meso-Tetraphenylporphine and its transition metal complexes . J. Nanosci. Nanotechnol. , 7 : 1530 – 1538 .
  • Ren , D. , Guo , Z. , Du , F. , Liu , Z. , Zhou , Z. , Shi , X. , Chen , Y. and Zheng , J. 2008 . A novel soluble tin (IV) porphyrin modified single-walled carbon nanotube nanohybrid with light harvesting properties . Int. J. Mol. Sci. , 9 : 45 – 55 .
  • Kauffman , D. R. , Kuzmych , O. and Star , A. 2007 . Interactions between single-walled carbon nanotubes and tetraphenyl metalloporphyrins: Correlation between spectroscopic and FET measurements . J. Phys. Chem. C , 111 : 3539 – 3543 .
  • Chitta , R. , Sandanayaka , A. S. D. , Schumacher , A. L. , D'Souza , L. , Araki , Y. , Ito , O. and D'Souza , F. 2007 . Donor-acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer . J. Phys. Chem. C , 111 : 6947 – 6955 .
  • Cheng , F. and Adronov , A. 2007 . Supramolecular interactions of conjugated Zn and protonated porphyrin polymer with carbon nanotubes . J. Porphyr. Phthalocyanines , 11 : 198 – 204 .
  • Tanaka , H. , Yajima , T. , Matsumoto , T. , Otsuka , Y. and Ogawa , T. 2006 . Porphyrin molecular nanodevices wired using single-walled carbon nanotubes . Adv. Mater. , 18 : 1411 – 1415 .
  • Rahman , G. M. A. , Guldi , D. M. , Campidelli , S. and Prato , M. 2006 . Electronically interacting single wall carbon nanotube–porphyrins nanohybrids . J. Mater. Chem. , 16 : 62 – 65 .
  • Kavakka , J. S. , Heikkinen , S. , Kilpeläinen , I. , Mattila , M. , Lipsanen , H. and Helaja , J. 2007 . Noncovalent attachment of pyro-pheophorbide a to a carbon nanotubes . Chem. Comm. , : 519 – 521 .
  • Guldi , D. M. , Rahman , G. M. A. , Qin , S. , Tchoul , M. , Ford , W. T. , Marcaccio , M. , Paolucci , D. , Paolucci , F. , Campidelli , S. and Prato , M. 2006 . Versatile coordination chemistry towards multifunctional carbon nanotube nanohybrids . Chem.-Eur. J. , 12 : 2152 – 2161 .
  • Alvaro , M. , Atienzar , P. , de la Cruz , P. , Delgado , J. L. , Troiani , V. , Garcia , H. , Langa , F. , Palkar , A. and Echegoyen , L. 2006 . Synthesis, photochemistry and electrochemistry of single-wall carbon nanotubes with pendent pyridyl groups and of their metal complexes with zinc porphyrin. Comparison with pyridyl-bearing fullerenes . J. Am. Chem. Soc. , 128 : 6626 – 6635 .
  • Ni Mhuircheartaigh , E. M. , Giordani , S. and Blau , W. J. 2006 . Linear and nonlinear optical characterization of a tetraphenylporphyrin-carbon nanotube composite system . J. Phys. Chem. B , 110 : 23136 – 23141 .
  • Saito , K. , Troiani , V. , Qiu , H. , Solladie , N. , Sakata , T. , Mori , H. , Ohama , M. and Fukuzumi , S. 2007 . Nondestructive formation of supramolecular nanohybrids of single-walled carbon nanotubes with flexible porphyrinic polypeptides . J. Phys. Chem. C , 111 : 1194 – 1199 .
  • Hecht , D. S. , Ramirez , R. J. A. , Briman , M. , Artukovic , E. , Chichak , K. S. , Stoddart , J. F. and Gruner , G. 2006 . Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor . Nano Lett. , 6 : 2031 – 2036 .
  • Guldi , D. M. , Rahman , G. M. A. , Jux , N. , Balbinot , D. , Hartnagel , U. , Tagmatarchis , N. and Prato , M. 2005 . Functional single-wall carbon nanotube nanohybrids-associating SWNTs with water-soluble enzyme model systems . J. Am. Chem. Soc. , 127 : 9830 – 9838 .
  • Chichak , K. S. , Star , A. , Altoé , M. V. P. and Stoddart , J. F. 2005 . Single-walled carbon nanotubes under the influence of dynamic coordination and supramolecular chemistry . Small , 1 : 452 – 461 .
  • Hasobe , T. , Fukuzumi , S. and Kamat , P. V. 2005 . Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes. J-and H-aggregates to nanorods . J. Am. Chem. Soc. , 127 : 11884 – 11885 .
  • Satake , A. , Miyajima , Y. and Kobuke , Y. 2005 . Porphyrin-carbon nanotube composites formed by noncovalent polymer wrapping . Chem. Mater. , 17 : 716 – 724 .
  • Chen , J. and Collier , C. P. 2005 . Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins . J. Phys. Chem. B , 109 : 7605 – 7609 .
  • Guldi , D. M. , Rahman , G. N. A. , Ramey , J. , Marcaccio , M. , Paolucci , D. , Paolucci , F. , Qin , S. , Ford , W. T. , Balbinot , D. , Jux , N. , Tagmatarchis , N. and Prato , M. 2004 . Donor–acceptor nanoensembles of soluble carbon nanotubes . Chem. Comm. , : 2034 – 2035 .
  • Murakami , H. , Nomura , T. and Nakashima , N. 2003 . Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin–nanotube nanocomposites . Chem. Phys. Lett. , 378 : 481 – 485 .
  • Nativ-Roth , E. , Shvartzman-Cohen , R. , Bounioux , C. , Florent , M. , Zhang , D. , Szleifer , I. and Yerushalmi-Rozen , R. 2007 . Physical adsorption of block copolymers to SWNT and MWNT: A nonwrapping mechanism . Macromolecules , 40 : 3676 – 3685 .
  • D'Souza , F. , Gadde , S. , Zandler , M. E. , Arkady , K. , El-Khouly , M. E. , Fujitsuka , M. and Ito , O. 2002 . Studies on covalently linked porphyrin-C60 dyads: Stabilization of charge-separated states by axial coordination . J. Phys. Chem. A , 106 : 12393 – 12404 .
  • Screen , T. E. O. , Blake , I. M. L. , Rees , H. , Clegg , W. , Borwick , S. J. and Anderson , H. L. 2002 . Making conjugated connections to porphyrins: A comparison of alkyne, alkene, imine and azo links . J. Chem. Soc., Perkin Trans. 1 , : 320 – 329 .
  • Lv , X. , Du , F. , Ma , Y. , Wu , Q. and Chen , Y. 2005 . Synthesis of high quality single-walled carbon nanotubes at large scale by electric arc using metal compounds . Carbon , 43 : 2020 – 2022 .
  • Shi , Z. , Lian , Y. , Liao , F. , Zhou , X. , Gu , Z. , Zhang , A. and Iijima , S. 1999 . Purification of single-wall carbon nanotubes . Solid State Comm. , 112 : 35 – 37 .
  • Bahr , J. L. and Tour , J. M. 2001 . Highly functionalized carbon nanotubes using in situ generated diazonium compounds . Chem. Mater. , 13 : 3823 – 3824 .
  • Oyaizu , K. , Hoshino , M. , Ishikawa , M. , Imai , T. and Yuasa , M. 2006 . Synthesis and characterization of a π-conjugated hybrid of oligothiophene and porphyrin . J. Polymer Sci. Polymer Chem. , 44 : 5403 – 5412 .
  • Bahr , J. L. , Mickelson , E. T. , Bronikowski , M. J. , Smalley , R. E. and Tour , J. M. 2001 . Dissolution of small diameter single-wall carbon nanotubes in organic solvents? . Chem. Comm. , : 193 – 194 .
  • Qin , Y. , Liu , L. , Shi , J. , Wu , W. , Zhang , J. , Guo , Z. , Li , Y. and Zhu , D. 2003 . Large-scale preparation of solubilized carbon nanotubes . Chem. Mater. , 15 : 3256 – 3260 .
  • Zhu , W. , Minami , N. , Kazaoui , Y. and Kim , Y. 2003 . Fluorescent chromophore functionalized single-wall carbon nanotubes with minimal alteration to their characteristic onedimensional electronic states . J. Mater. Chem. , 13 : 2196 – 2201 .
  • Maiya , B. G. , Doraiswamy , S. , Periasamy , N. , Venkataraman , B. and Krishnan , V. 1994 . Timeresolved fluorescence studies on covalently linked porphyrin–nitroarene complexes. Conformational control of photoinduced electron transfer reactions . J. Photochem. Photobiol. Chem. , 81 : 139 – 150 .
  • Laurence , C. , Nicolet , P. , Dalati , M. T. , Abboud , J. M. and Notario , R. 1994 . The empirical treatment of solvent-solute interactions: 15 years of π . J. Phys. Chem. , 98 : 5807 – 5816 .
  • Seybold , P. G. and Gouterman , M. 1969 . Porphyrins: XIII: Fluorescence spectra and quantum yields . J. Mol. Spectrosc. , 31 : 1 – 13 .
  • Quimby , D. J. and Longo , F. R. 1975 . Luminescence studies on several tetraarylporphins and their zinc derivatives . J. Am. Chem. Soc. , 97 : 5111 – 5117 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.