117
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of Nanocrystalline ZnS from (1,10-phenanthroline)bis(1,2,3,4-tetrahydroquinolinecarbodithioato-S,S′)zinc(II)

&
Pages 1256-1263 | Received 10 Feb 2012, Accepted 08 Dec 2012, Published online: 09 Jul 2013

REFERENCES

  • Peng , X. , Manna , L. , Yang , W. , Wickham , J. , Schere , E. , Kadacanich , A. and Alivisatos , A. P. 2000 . Shape control of CdSe nanocrystals . Nature , 404 : 59 – 61 .
  • Pyun , J. and Matyjaszewski , K. 2001 . Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“living” radical polymerization . Chem. Mater. , 13 : 3436 – 3448 .
  • Coe , S. , Woo , W. K. , Bawendei , M. and Bulovic , V. 2000 . Electroluminescence from single monolayers of nanocrystals in molecular organic devices . Nature , 420 : 800 – 803 .
  • Talapin , D. V. , Poznyak , S. K. , Gaponik , N. P. , Rogach , A. L. and Eychmuller , A. 2002 . Synthesis of surface-modified semiconductor nanocrystals and study of photoinduced charge separation and transport in nanocrystal-polymer composites . Physica E , 14 : 237 – 241 .
  • Schuetz , P. and Caruso , F. 2004 . Semiconductor and metal nanoparticle formation on polymer spheres coated with weak polyelectrolyte multilayers . Chem. Mater. , 16 : 3066 – 3073 .
  • Murray , C. B. , Norris , C. J. and Bawendi , M. G. 1993 . Synthesis and characterization of nearly monodisperse CdE(E = S, Se, Te) semiconductor nanocrystallites . J. Am. Chem. Soc. , 115 : 8706 – 8715 .
  • Ascencio , J. A. , Santiago , P. , Rendon , L. and Pal , U. 2004 . Structural basis for homogeneous CdS nanorods: synthesis and HRTEM characterization . Appl. Phys. A , 78 : 5 – 7 .
  • Li , Y. , Li , X. , Yang , C. and Li , Y. 2003 . Controlled synthesis of CdS nanorods and hexagonal nanocrystals . J. Mater. Chem. , 13 : 2641 – 2648 .
  • Kar , S. and Chaudhuri , S. 2005 . Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons . J. Phys. Chem. B , 109 : 3298 – 3302 .
  • Do , Y. R. , Kim , Y. C. , Cho , S. H. , Ahn , J. H. and Lee , J. G. 2003 . Improved output coupling efficiency of a ZnS:Mn thin-film electroluminescent device with addition of a two-dimensional SiO2 corrugated substrate . Appl. Phys. Lett. , 82 : 4172 – 4174 .
  • Xu , C. N. , Watanabe , T. , Akiyana , M. and Zheng , X. G. 1999 . Preparation and characteristics of highly tribloluminescent ZnS film . Mater. Res. Bull. , 32 : 1491 – 1500 .
  • Chen , W. , Wang , Z. and Lin , Z. 1997 . Thermoluminescence of ZnS nanoparticles . Appl. Phys. Lett. , 70 : 1465 – 1467 .
  • Bredol , M. and Merichi , J. 1998 . ZnS precipitation: morphology control . J. Mater. Sci. , 33 : 471 – 476 .
  • Calandra , P. , Goffredi , M. and Liveri , V. T. 1999 . Study of the growth of ZnS nanoparticles in water /AOT/n-heptane microemulsions by UV-absorption spectroscopy . Colloids Surf. A , 160 : 9 – 13 .
  • Prevenslik , T. V. 2000 . Acoustoluminescence and sonoluminescence . J. Lumin. , 87 : 1210 – 1212 .
  • Tang , W. and Cameron , D. C. 1996 . Electroluminescent zinc sulphide devices produced by sol-gel processing . Thin Solid Films , 280 : 221 – 226 .
  • Bruchez , J. M. , Moronne , M. , Gin , P. , Weiss , S. and Alivisatos , A. P. 1998 . Semiconductor nanocrystals as fluorescent biological labels . Science , 281 : 2013 – 2016 .
  • Manzoor , K. , Vadera , S. R. , Kumar , N. and Kutty , T. R. N. 2004 . Multicolor electroluminescent devices using doped ZnS nanocrystals . Appl. Phys. Lett. , 84 : 284 – 286 .
  • Karar , N. , Singh , F. and Mehta , B. R. 2004 . Structure and photoluminescence studies on ZnS:Mn nanoparticles . J. Appl. Phys. , 95 : 656 – 660 .
  • Cruz , A. B. , Shen , Q. and Toyoda , T. 2005 . Studies on the effect of UV irradiation on Mn-doped ZnS nanoparticles . Mater. Sci. Eng. C , 25 : 761 – 765 .
  • Jiang , D. X. , Cao , L. X. , Su , G. , Qu , H. and Sun , D. K. 2007 . Luminescence enhancement of Mn doped ZnS nanocrystals passivated with zinc hydroxide . Appl. Surf. Sci. , 253 : 9330 – 9335 .
  • Li , Y. D. , Ding , Y. , Zhang , Y. and Qian , Y. T. 1999 . Photophysical properties of ZnS quantum dots . J. Phys. Chem. Solids , 60 : 13 – 15 .
  • Yu , S. H. and Yoshimura , M. 2002 . Shape and phase control of ZnS nanocrystals: template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS(NH2CH2 CH2NH2)0.5 . Adv. Mater. , 14 : 296 – 300 .
  • Verma , A. K. , Rauchfuss , T. B. and Wilson , S. R. 1995 . Donor solvent mediated reactions of elemental zinc and sulfur, sans explosion . Inorg. Chem. , 34 : 3072 – 3078 .
  • Souici , A. H. , Keghouche , N. , Delaire , J. A. , Remita , H. and Mostafavi , M. 2006 . Radiolytic synthesis and optical properties of ultra-small stabilized ZnS nanoparticles . Chem. Phys. Lett. , 422 : 25 – 29 .
  • Vogel , W. , Borse , P. H. , Deshmukh , N. and Kulkarni , S. K. 2000 . Structure and stability of monodisperse 1.4 nm ZnS particles stabilized by mercaptoethanol . Langmuir , 16 : 2032 – 2037 .
  • Cushing , B. L. , Kolesnichenko , V. L. and O’Connor , C. J. 2004 . Recent advances in the liquid-phase syntheses of inorganic nanoparticles . Chem. Rev. , 104 : 3893 – 3946 .
  • Revaprasadu , N. and Mlondo , S. N. 2006 . Use of metal complexes to synthesize semiconductor nanoparticles . Pure Appl. Chem. , 78 : 1691 – 1702 .
  • Malik , M. A. , O’Brien , P. and Revaprasadu , N. 2005 . Precursor routes to semiconductor quantum dots . Phosphorus Sulphur Silicon Relat. Elem. , 180 : 689 – 712 .
  • Pickett , N. L. and O’Brien , P. 2001 . Syntheses of semiconductor nanoparticles using single-molecular precursors . Chemical Record , 1 : 467 – 479 .
  • Malik , M. A. , Revaprasadu , N. and O’Brien , P. 2001 . Air-stable single-source precursors for the synthesis of chalcogenide semiconductor nanoparticles . Chem. Mater. , 13 : 913 – 920 .
  • Altomare , A. , Burla , M. C. , Camalli , M. , Cascavano , G. , Giacovazzo , G. , Guagliardi , A. and Polidori , G. 1994 . SIRPOW.92– a program for automatic solution of crystal structures by direct methods optimized for powder data . J. Appl. Crystallogr. , 27 : 435 – 436 .
  • Sheldrick , G. M. 1997 . SHELXL-97 , Germany : University of Gottingen .
  • Garg , B. S. , Garg , R. K. and Reddy , M. J. 1993 . Synthesis and spectral characterization of zinc(II), cadmium(II) and mercury(II) with tetrahydroquinoline and tetrahydroisoquinoline dithiocarbamates . Ind. J. Chem. A , 32 : 697 – 700 .
  • Ronconi , L. , Giovagnini , L. , Marzano , C. , Effio , F. B. , Graziani , R. , Pilloni , G. and Fregona , D. 2005 . Gold dithiocarbamate derivatives as potential antineoplastic agents: design, spectroscopic properties, and in vitro antitumor activity . Inorg. Chem. , 44 : 1867 – 1881 .
  • Baggio , R. , Frigerio , A. , Halac , E. B. , Vega , D. and Perec , M. 1992 . Anionic halide and isothiocyanate adducts of zinc and cadmium dithiocarbamates . J. Chem. Soc. Dalton Trans. , : 549 – 554 .
  • Aravamudan , G. , Brown , D. H. and Venkappayya , D. 1971 . Some metal complexes of morpholine-4-carbodithioate . J. Chem. Soc. A , : 2744 – 2747 .
  • Bonati , F. and Ugo , R. 1967 . Organotin(IV) N,N-Disubstituted dithiocarbamates . J. Organomet. Chem. , 10 : 257 – 268 .
  • Martin , B. , McWhinnie , W. R. and Waind , G. M. 1961 . 2:2′-Dipyridyl complexes of cobalt, rhodium and iridium-II . J. Inorg. Nucl. Chem. , 23 : 207 – 223 .
  • Sinha , S. P. 1964 . 2,2′-Dipyridyl complexes of rare earths I: preparation, infra-red and some other spectroscopic data . Spectrochim. Acta , 20 : 879 – 886 .
  • Srinivasan , N. , Thirumaran , S. and Ciattini , S. 2009 . Effect of position of methyl substituent in piperidinedithiocarbamate on the ZnS4N chromophore: synthesis, spectral, valence-bond parameters and single crystal X-ray structural studies on bis(2-methylpiperidinecarbodithioato-S,S′)(pyridine)zinc(II) and bis(4-methylpiperidinecarbodithioato-S,S′)(pyridine)zinc(II) . J. Mol. Struct. , 936 : 234 – 238 .
  • Srinivasan , N. , Thirumaran , S. and Ciattini , S. 2009 . Effect of phenyl and benzyl group in heterocyclic dithiocarbamates on the ZnS4N chromophore: synthesis, spectral, valence-bond parameters and single crystal X-ray structural studies on (pyridine)bis(1,2,3,4-tetrahydroquinolinedithiocarbamato) zinc(II) and (pyridine) bis(1,2,3,4-tetrahydroisoquinolinedithiocarbamato) zinc(II) . J. Mol. Struct. , 921 : 63 – 67 .
  • Srinivasan , N. , Thirumaran , S. and Ciattini , S. Solid State Sci. , (Communicated)
  • Casas , J. S. , Castano , M. V. , Freire , C. , Sanchez , A. , Sordo , J. , Castellano , E. E. and Zukerman-Schpector , J. 1994 . Dithiocarbamates of dimethylthallium(I11). Crystal structure of dimethyl(di-n-propyldithiocarbamato)thallium(III) . Inorg. Chim. Acta , 216 : 15 – 20 .
  • Van Gaal , H. L. M. , Diesveld , J. W. , Pijpers , F. W. and Van Der Linden , J. G. M. 1979 . 13C NMR Spectra of dithiocarbamates. chemical shifts, carbon-nitrogen stretching vibration frequencies, and π- bonding in the NCS2 fragment . Inorg. Chem. , 18 : 3251 – 3260 .
  • Higgins , G. M. C. and Savile , B. 1963 . Complexes of amines with zinc dialkyldithiocarbamates . J. Chem. Soc. , 3 : 2812 – 2817 .
  • Lai , C. S. and Tiekink , E. R. T. 2004 . (2,2′-Bipyridine)bis(N,N-dibenzyldithio carbamato)zinc(II). . Appl. Organomet. Chem. , 18 : 197 – 198 .
  • Srinivasan , N. , Thirumaran , S. , Kohli , S. and Rajnikant . 2010 . Synthesis and spectral studies on N,N,N′,N′-Tetramethylethylenediamine adducts of bis(4-methylpiperidinecarbodithio-ato-S,S′)M(II) (M = zinc, cadmium): single crystal X-ray structure of bis(4-methylpiperidinecarbodithioato-S,S′)(N,N,N′,N′-Tetramethylethylenediamine)zinc(II) . J. Chem. Crystallogr. , 40 : 505 – 509 .
  • Lippers , P. E. and Lanhoo , M. 1989 . Calculation of the band gap for small CdS and ZnS crystallites . Phys. Rev. B , 39 : 10935 – 10942 .
  • Yang , P. , Lu , M. K. , Meng , F. Q. , Song , C. F. and Xu , D. 2004 . A novel luminescent property from composite of ZnS nanocrystallites and organic chromophore molecules . Opt. Mater. , 27 : 103 – 107 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.