124
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Ralstonia eutropha (Cupriavidus metallidurans) Mediated Biosynthesis of Gold Nanoparticles and Catalytic Treatment of 2, 4 Dichlorophenol

&
Pages 238-247 | Received 29 Apr 2013, Accepted 27 Jul 2013, Published online: 26 Aug 2014

References

  • Ankamwar, B.; Chaudhary, M.; Sastry, M. Gold nanotrialngles biologically synthesized using tamrind leaf extract and potential application in vapor sensing. Synth. React. Inorg. Met.-Org. Chem. 2005, 35, 19–26.
  • Sheikhloo, Z.; Salouti, M. Intracellular biosynthesis of gold nanoparticles by fungus Phomamacrostoma. Synth. React. Inorg. Met.-Org. Chem. 2012, 42, 65–67.
  • He, S. Y.; Guo, Z. R.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett. 2007, 61, 3984–3987.
  • He, S. Y.; Zhang, Y.; Gu, Z. R.; Gu, N. Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol. Prog. 2008, 24, 476–480.
  • Wen, L.; Lin, Z.; Gu, P.; Zhou, J.; Yao, B.; Chen, G.; Fu, J. Extracellular biosynthesis of monodispersed gold nanoparticles by SAM capping route. J. Nanopart. Res. 2009, 11, 279–288.
  • Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R.; Ramani, R.; Srinivas, V.; Sastry, M. Intracellular synthesis of gold nanoparticles by novel alkalo tolerant actinomycetes, Rhodococcus sp. Nanotechnology 2003, 14, 824–828.
  • Lengke, M.; Ravel, B.; Fleet, M. E.; Wanger, G.; Gordon, R. A.; Southam, G. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environ. Sci. Technol. 2006, 40, 6304–6309.
  • Slocik, J. M.; Knecht, M. R.; Wright, D. W. Biogenic nanoparticles. Encyclopedia Nanosci. Nanotechnol. 2004, 1, 293–308.
  • Husseiny, M. I.; El-Aziz, M. A.; Badr, Y.; Mahmoud, M. A. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta, Part A 2007, 67, 1003–1006.
  • Carte, D. S.; Hennebel, T.; Verschuere, S.; Cuvelier, C.; Verstraete, W.; Boon, N. Gold nanoparticles formation using Shwanellaoreidensis: a fast biosorption and slow reduction process. J. Chem. Technol. Biotechnol. 2011, 86, 547–553.
  • Konishi, Y. T.; Sukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochimica Acta 2007, 53, 186–192.
  • Nair, B.; Pradeep, T. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2002, 4, 295–298.
  • Du, L. W.; Hong, J.; Liu, X. H.; Wang, E. K. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem. Commun. 2007, 9, 1165–1170.
  • Longoria-Castro, E.; Nestar-Vilchis, R. A.; Borjia-Avalosm, M. Biosynthesis of silver and gold and bimetallic nanoparticles using filamentous fungus Neurosporacrassa. Colloids Surf., B 2011, 83, 42–48.
  • Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R.; Sastry, M. Extracellular biosynthesis of monodisperse gold nanoparticlesby a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 2003, 19, 3550–3553.
  • Derakhshan, F. K.; Dehnad, A.; Salouti, M. Extracellular biosynthesis of gold nanoparticles by metal resistance bacteria: Streptomyces griseus. Synth. React. Inorg. Met.-Org. Chem. 2012, 42, 868–871.
  • Kaliamuthu, K.; Venkataraman, D.; Suresh, B. R. K. P.; Muniasamy, K.; Selvaraj, B. K.; Bose, K.; Sangiliyandi, G. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf., B 2010, 77, 257–262.
  • Vandamme, P.; Coenye, T. Taxonomy of the genus Cupriavidus: a tale of lost and found. Int. J. Syst. Evol. Microbiol. 2004, 54, 2285–2289.
  • Janssen, J. P.; Houdt, V. R.; Moors, H.; Monsieurs, P.; Morin, N.; Michaux, A.; Benotmane, A. M.; Leys, N.; Vallaeys, T.; Lapidus, A.; Monchy, S.; Medigue, C.; Taghavi, S.; McCorkle, S.; Dunn, J.; Lelie, V. D.; Mergeay, M. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 2010, 5, 1–33.
  • Reith, F.; Rogers, L. S.; McPhail, C. D.; Webb, D. Biomineralization of gold: Biofilms on bacterioform gold. Science 2006, 313, 233–236.
  • Reith, F.; Etschmann, B.; Grosse, C.; Moors, H.; Mohammed, A. B.; Monsieurs, P.; Grass, G.; Doonan, C.; Vogt, S.; Laj, B.; Martinez-Criado, G.; George, N. G.; Niles, H. D.; Mergeay, M.; Pring, A.; Southam, G.; Brugger, J. Mechanism of gold biomineralization in the bacterium Cupriavidus metallidurans. PNAS 2009, 106, 17757–17762.
  • Gauthier, D.; Sobjerg, L. S.; Jensen, K. M.; Lindhardt, A. T.; Bunge, M.; Finster, K.; Meyer, R. L.; Skrydstrup, T. Environmentally benign recovery and reactivation of palladium from industrial waste by using Gram-negative bacteria. Chem. Sus. Chem. 2010, 3, 1036–1039.
  • Zhang, Z.; Shen, Q.; Cissoko, N.; Wo, J.; Xu, X. Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid. J. Hazard. Mater. 2010, 182, 252–258.
  • Zhang, Z.; Cissoko, N.; Wo, J.; Xu, X. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni–Fe nanoparticles in the presence of humic acid. J. Hazard. Mater. 2009, 165, 78–86.
  • Yuan, G.; Keane, M. A. Catalyst deactivation during the liquid phase hydrodechlorination of 2, 4-dichlorophenol over supported Pd: influence of the support. Catal. Today 2003, 88, 27–36.
  • Lu, Q.; Yu, J.; Gao, J. Degradation of 2, 4-dichlorophenol by using glow discharge electrolysis. J. Hazard. Mater. 2006, 136, 526–531.
  • Gianluca, L. P.; Po, L. Y. Photocatalytic oxidation of chlorophenols in single-component and multicomponent systems. Ind. Eng. Chem. Res. 1999, 38, 3238–3245.
  • Liu, L.; Chen, F.; Yang, F. Stable photocatalytic activity of immobilized Fe0/TiO2/ACF on composite membrane in degradation of 2, 4-dichlorophenol. Sep. Purif. Technol. 2009, 70, 173–178.
  • Wongwistae, P.; Chavadej, S.; Gulari, E.; Sreethawong, T.; Rangsunvigit, P. Effects of monometallic and bimetallic Au–Ag supported on sol–gel TiO2 on photocatalytic degradation of 4-chlorophenol and its intermediates. Desalination 2011, 272, 154–163.
  • Oros-Ruiz, S.; Pedraza-Avella, J. A.; Guzman, C.; Quintana, M.; Moctezuma, E.; Angel, G. D.; Gomez, R.; Perez, E. Effect of gold particle size and deposition method on the photodegradation of 4-chlorophenol by au/tio2. Top. Catal. 2011, 54, 519–526.
  • Sarkar, J.; Ray, S.; Chattopadhyay, D.; Laskar, A.; Acharya, K. Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst. Eng. 2012, 35, 637–643.
  • Nakajima, A. Accumulation of gold by microorganisms. J. World. Microbiol. Biotechnol. 2003, 19, 369–374.
  • Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 2007, 18, 105104–105115.
  • Narayanan, K. B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloids Interface Sci. 2010, 156, 1–13.
  • Srivastava, N.; Mukhopadhyay, M. Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol. 2013, 244, 26–29.
  • Kumar, S. A.; Abyaneh, M. K.; Gosavi, S. W.; Kulkarni, S. K.; Ahmad, A.; Khan, M. I. Sulfate reductase- mediated synthesis of gold nanoparticles capped with phytochelatin. Appl. Biochem. 2007, 47, 191–195.
  • Greene, B.; Hosea, M.; McPherson, R.; Henzl, M.; Alexander, M. D.; Darnall, D. W. Interaction of gold(I) and gold(III) complexes with algal biomass. Environ. Sci. Technol. 1986, 20, 627–632.
  • Cai, F.; Li, J.; Sun, J.; Yulan, J. Biosynthesis of gold nanoparticles by biosorption using Magnetospirillum gryphiswaldense MSR-1. Chem. Eng. J. 2011, 175, 70–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.