336
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

In Situ Formed Ruthenium(0) Nanoparticles Supported on TiO2 Catalyzed Hydrogen Generation from Aqueous Ammonia-Borane Solution at Room Temperature Under Air

, &
Pages 534-542 | Received 18 Mar 2014, Accepted 04 Nov 2014, Published online: 18 Nov 2015

References

  • Inter Academy Council. Lighting the Way Towards a Sustainable Energy Futures; IAC, Amsterdam, 2007.
  • U.S. Department of Energy. Basic Research Needs for the Hydrogen Economy, Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage and Use. 2003. Accessed at: http://science.energy.gov/˜/media/bes/pdf/reports/files/nhe_rpt.pdf.
  • Turner, J.; Sverdrup, G.; Mann, K.; Maness, P. G.; Kroposki, B.; Ghirardi, M.; Evans, R. J.; Blake, D. Renewable hydrogen production. Int. J. Energy Res. 2008, 32, 379–407.
  • Energy Information Administration. Annual Energy Outlook 2005 With Projections To 2025; 2005. Accessed at: www.eia.doe.gov/oiaf/aeo/pdf/0383(2005).pdf.
  • Au, M.; Jurgensen, A. Modified lithium borohydrides for reversible hydrogen storage. J. Phys. Chem. B 2006, 110, 7062–7067.
  • Zahmakiran, M.; Özkar, S. Zeolite-confined ruthenium(0) nanoclusters catalyst: Record catalytic activity, reusability, and lifetime in hydrogen generation from the hydrolysis of sodium borohydride. Langmuir 2009, 25, 2667–2678.
  • Rönnebro, E.; Majzoub, E. H. Calcium borohydride for hydrogen storage: catalysis and reversibility. J. Phys. Chem. B 2007, 111, 12045–12047.
  • Jiang, H. L.; Singh, S. K.; Yan, J. M.; Zhang, X. B.; Xu, Q. Liquid phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions. Chem. Sus. Chem. 2010, 3, 541–549.
  • Staubitz, A.; Robertson, A. P. M.; Manners, I. Ammonia-borane and related compounds as hydrogen donors. Chem. Rev. 2010, 110, 4079–4124.
  • Yoon, C. W.; Sneddon, L. G. Ammonia triborane: A promising candidate for amineborane-based chemical hydrogen storage. J. Am. Chem. Soc. 2006, 128, 13992–13993.
  • Huang, X.; Chen, X.; Yisgedu, T.; Meyers, E. A.; Shore, S. G.; Zhao, J. C. Ammonium octahydrotriborate (NH4B3H8): New synthesis, structure and hydrogen storage properties. Inorg. Chem. 2011, 50, 3738–3742.
  • Karahan, S.; Zahmakiran, M.; Özkar, S. Catalytic hydrolysis of hydrazine borane for chemical hydrogen storage: Highly efficient and fast hydrogen generation system at room temperature. Int. J. Hydr. Energy 2011, 36, 4958–4966.
  • Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. B-N compounds for chemical hydrogen storage. Chem. Soc. Rev. 2009, 38, 279–293.
  • Jiang, H. L.; Xu, Q. Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal. Today 2011, 170, 56–63.
  • Zahmakiran, M.; Ayvali, T.; Akbayrak, S.; Çalışkan, S.; Çelik, D.; Özkar, S. Zeolite framework stabilized nickel(0) nanoparticles: Active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride. Catal. Tod. 2011, 170, 76–84.
  • Stephens, F. H.; Pons, V.; Baker, R. T. Ammonia-borane, the hydrogen storage source par excellence. Dalton Trans. 2007, 25, 2613–2626.
  • Bluhm, M. E.; Bradley, M. G.; Butterick, R.; Kusari, U.; Sneddon, L. G. Amine-borane based chemical hydrogen storage: Enhanced ammonia-borane dehydrogenation in ionic liquids. J. Am. Chem. Soc. 2006, 128, 7748–7749.
  • Ciganda, R.; Garralda, M. A.; Ibarlucea, L.; Pinilla, E.; Torres, M. R. A hydridoirida-β-diketone as an efficient and robust homogeneous catalyst for the hydrolysis of ammonia–borane or amine–borane adducts in air to produce hydrogen. Dalton Trans. 2010, 39, 7226–7229.
  • Graham, T. W.; Tsang, C. W.; Chen, X.; Guo, R.; Jia, W.; Lu, S. M.; Sui-Seng, C.; Ewart, C. B.; Lough, A.; Amoroso, D.; Abdur-Rashid, K. Catalytic solvolysis of ammonia borane. Angew. Chem. Int. Ed. 2010, 49, 8708–8711.
  • Fortman, G. C.; Slawin, A. M. Z.; Nolan, S. P. Highly active iridium(III)–NHC system for the catalytic B–N bond activation and subsequent solvolysis of ammonia–borane. Organometallics 2011, 30, 5487–5492.
  • Thomas, J. M.; Thomas, W. J. Principles and Practice of Heterogeneous Catalysis; Wiley, New York, 1997.
  • Chandra, M.; Xu, Q. A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J. Power Sources 2006, 156, 190–194.
  • Chandra, M.; Xu, Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. J. Power Sources 2007, 168, 135–142.
  • Akbayrak, S.; Erdek, P.; Özkar, S. Hydroxyapatite supported ruthenium(0) nanoparticles catalyst in hydrolytic dehydrogenation of ammonia borane: Insight to the nanoparticles formation and hydrogen evolution kinetics. App. Catal. B: Environ. 2013, 142, 187–195.
  • Can, H.; Metin, Ö. A facile synthesis of nearly monodisperse ruthenium nanoparticles and their catalysis in the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. App. Catal. B: Environ. 2012, 125, 304–310.
  • Durap, F.; Zahmakiran, M.; Özkar, S. Water soluble laurate-stabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: High activity and long lifetime. Int. J. Hydr. Energy 2009, 34, 7223–7230.
  • Metin, Ö.; Şahin, Ş.; Özkar, S. Water-soluble poly(4-styrenesulfonic acid-co-maleic acid) stabilized ruthenium(0) and palladium(0) nanoclusters as highly active catalysts in hydrogen generation from the hydrolysis of ammonia–borane. Int. J. Hydr. Energy 2009, 34, 6304–6313.
  • Zahmakiran, M. Preparation and characterization of LTA-type zeolite framework dispersed ruthenium nanoparticles and their catalytic application in the hydrolytic dehydrogenation of ammonia–borane for efficient hydrogen generation. Mater. Sci. Eng. B 2012, 177, 606–613.
  • Dai, H. B.; Kang, X. D.; Ping, W. Ruthenium nanoparticles immobilized in montmorillonite used as catalyst for methanolysis of ammonia borane. Int. J. Hydr. Energy 2010, 35, 10317–10323.
  • Basu, S.; Brockman, A.; Gagare, P.; Zheng, Y.; Ramachandran, P. V.; Delgass, W. N.; Gore, J. P. Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis. J. Power Sources 2009, 188, 238–243.
  • Liang, H. Y.; Chen, G. Z.; Desinan, Z.; Rosei, R.; Rosei, F.; Ma, D. L. In situ facile synthesis of ruthenium nanocluster catalyst supported on carbon black for hydrogen generation from the hydrolysis of ammonia-borane. Int. J. Hydr. Energy 2012, 37, 17921–17927.
  • Akbayrak, S.; Özkar, S. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia–borane. ACS App. Mater. Int. 2012, 4, 6302–6310.
  • Widegren, J. A.; Aiken, J. D.; Özkar, S.; Finke, R. G. Additional ınvestigations of a new kinetic method to follow transition-metal nanocluster formation, including the discovery of heterolytic hydrogen activation in nanocluster nucleation reactions. Chem. Mater. 2001, 13, 312–324.
  • Widegren, J. A.; Bennett, M. A.; Finke, R. G. Is It homogeneous or heterogeneous catalysis? identification of bulk ruthenium metal as the true catalyst in benzene hydrogenations starting with the monometallic precursor, Ru(II)(η6-C6Me6)(oac)2, plus kinetic characterization of the heterogeneous nucleation, then autocatalytic surface-growth mechanism of metal film formation. J. Am. Chem. Soc. 2003, 125, 10301–10310.
  • Watzky, M. A.; Finke, R. G. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen ıs the reductant:  slow, continuous nucleation and fast autocatalytic surface growth. J. Am. Chem. Soc. 1997, 119, 10382–10400.
  • Zahmakiran, M.; Özkar, S. Dimethylammonium hexanoate-stabilized rhodium(0) nanoclusters identified as true heterogeneous catalyst with the highest observed activity in the dehydrogenation of dimethylamine borane. Inorg. Chem. 2009, 48, 8955–8964.
  • Ramachandran, P. V.; Gagare, P. D. Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. Inorg. Chem. 2007, 46, 7810–17.
  • Wagner, C.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer, 1979.
  • Wilkins, R. G. Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd edn.; VCH: New York, 1991.
  • Clark, T. J.; Whittell, G. R.; Manners, I. Highly efficient colloidal cobalt- and rhodium-catalyzed hydrolysis of H3N·BH3 in air. Inorg. Chem. 2007, 46, 7522–7527.
  • Çalışkan, S.; Zahmakiran, M.; Durap, F.; Özkar, S. Catalytic methanolysis of hydrazine-borane: A new and efficient hydrogen generation system under mild conditions. Dalton Trans. 2012, 41, 4976–4984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.