188
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Photocatalytic and antibacterial effects of silver nanoparticles fabricated by Bacillus subtilis SJ 15

, &
Pages 901-908 | Received 03 Jan 2016, Accepted 21 Aug 2016, Published online: 16 Feb 2017

References

  • Ashokkumar, S.; Ravi, S.; Kathiravan, V.; Velmurugan S. Rapid biological synthesis of silver nanoparticles using Leucas martinicensis leaf extract for catalytic and antibacterial activity. Environ. Sci. Pollut. Res. 2014, 21, 11439.
  • Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of Chem. Res. 2008, 41, 1578.
  • Castellano, J. J.; Shafii, S. M.; Ko, F.; Donate, G.; Wright, T. E.; Mannari, R. J.; Payne, W. G.; Smith, D. J.; Robson, M. C. Comparative evaluation of silver-containing antimicrobial dressings and drugs. Inter Wound J. 2007, 4, 114.
  • Song, J. Y.; Jang, H. K.; Kim, B. S. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 2009, 44, 1133.
  • Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823.
  • Venkatesham, M.; Ayodhya, D.; Madhusudhan, A.; Veera Babu, N.; Veerabhadram, G. A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies. Appl. Nanosci. 2012, 4, 113.
  • Otari, S. V.; Patil, R. M.; Nadaf, N. H.; Ghosh, S. J.; Pawar, S. H. Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environ. Sci. Pollut. Res. 2013, 21, 1503.
  • Anil Kumar, S.; Abyaneh, M. K.; Gosavi, S. W.; Kulkarni, S. K.; Pasricha, R.; Ahmad, A.; Khan, M. I. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotech Lett. 2007, 29, 439.
  • Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological synthesis of metallic nanoparticles. Nanomed. 2010, 6, 257.
  • Sintubin, L.; Verstraete, W.; Boon, N. Biologically produced nanosilver: current state and future perspectives. Biotech Bioeng. 2012, 109, 2422.
  • Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotech. 2005, 16, 2346.
  • Leid, J. G.; Ditto, A. J.; Knapp, A.; Shah, P. N.; Wright, B. D.; Blust, R.; Christensen, L.; Clemons, C. B.; Wilber, J. P.; Young, G. W.; Kang, A. G.; Panzner, M. J.; Cannon, C. L.; Yun, Y. H.; Youngs, W. J.; Seckinger, N. M.; Cope, E. K. In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J. Antimicrob. Chemother. 2011, 67, 138.
  • Soenen, S. J.; Rivera-Gil, P.; Montenegro, J. M.; Parak, W. J.; De Smedt, S. C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6, 446.
  • Langhals, H. Color chemistry. synthesis, properties and applications of organic dyes and pigments, 3rd revised edition. By Heinrich Zollinger. Angewandte Chemie International Ed 2004, 43, p. 5291.
  • Ong, S. T.; Keng, P. S.; Lee, W. N.; Ha, S. T.; Hung, Y. T. Dye waste treatment. Water 2011, 3, 157.
  • Vidhu, V. K.; Philip, D. Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower. Micron. 2014, 56, 54.
  • Suvith, V. S.; Philip, D. Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim. Acta A. 2014, 118, 526.
  • Kumar, P.; Govindaraju, M.; Senthamilselvi, S.; Premkumar, K. Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Coll. Surf. B. 2013, 103, 658.
  • Pirkanniemi, K.; Sillanpaa, M. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 2002, 48, 1047.
  • Thomas, R.; Janardhanan, A.; Varghese, R. T.; Soniya, E. V.; Mathew, J.; Radhakrishnan, E. K. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Brazilian J. Microb. 2014, 45, 1221.
  • Thomas, R.; Aswathi, N.; Soumya, K. R.; Mathew, J.; Radhakrishnan, E. K. Antibacterial activity and synergistic effect of biosynthesized AgNPs with antibiotics against multidrug-resistant biofilm-forming coagulase-negative Staphylococci isolated from clinical samples. Applied Biochem. Biotech. 2014, 173, 449.
  • Quelemes, P. V.; Araruna, F. B.; de Faria, B. E.; Kuckelhaus, S. A.; da Silva, D. A.; Mendonça, R. Z.; Eiras, C.; Dos S.; Soares, M. J.; Leite, J. R. Development and antibacterial activity of cashew gum-based silver nanoparticles. Int. J. Mol. Sci. 2013, 14, 4969.
  • Das, V. L.; Thomas, R.; Varghese, R. T.; Soniya, E. V.; Mathew, J.; Radhakrishnan, E. K. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. Biotech. 2013, 4, 121.
  • Awwad, A. M.; Salem, N. M.; Abdeen, A. O. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Indust. Chem. 2013, 4, 29.
  • Vigneshwaran, N.; Ashtaputre, N. M.; Varadarajan, P. V.; Nachane, R. P.; Paralikar, K. M.; Balasubramanya, R. H. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 2007, 61, 1413.
  • Narayanan, K. B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Coll. Inter. Scienc. 2010, 156, 1.
  • Iram, F.; Iqbal, M. S.; Athar, M. M.; Saeed, M. Z.; Yasmeen, A.; Ahmad, R. Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study. Carbohydrate Polymers 2014, 104, 29.
  • Arunachalam, R.; Dhanasingh, S.; Kalimuthu, B.; Uthirappan, M.; Rose, C.; Mandal, A. B. Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Coll. Surf. B. 2012, 94, 226.
  • Thiel, J.; Pakstis, L.; Buzby, S.; Raffi, M.; Ni, C.; Pochan, D. J.; Shah, S. I. Antibacterial properties of silver-doped titania. Small 2007, 3, 799.
  • Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271.
  • Pal, S.; Tak, Y. K.; Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microb. 2007, 73, 1712.
  • Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Coll. Inter. Sci. 2004, 275, 177.
  • Van Der Wal, A.; Norde, W.; Zehnder, A. J. B.; Lyklema, J. Determination of the total charge in the cell walls of Gram-positive bacteria. Coll. Surf. B. 1997, 9, 81.
  • Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J. Nanomaterials 2015, 8, 2015.
  • Tamboli, D. P.; Lee, D. S. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. J. Hazardous. Mater. 2013, 260, 878.
  • Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotech. 2007, 18, 225103.
  • Vadivelan, V.; Kumar, K. V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Coll. Interface Sci. 2005, 286, 90.
  • Borase, H. P.; Patil, C. D.; Salunkhe, R. B.; Suryawanshi, R. K.; Salunke, B. K.; Patil, S. V. Transformation of aromatic dyes using green synthesized silver nanoparticles. Bioprocess Biosyst. Eng. 2014, 37, 1695.
  • Rauf, M. A.; Meetani, M. A.; Khaleel, A.; Ahmed, A. Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chemical Eng. J. 2010, 157, 373.
  • Vidhu, V. K.; Philip, D. Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Spectrochimi Acta A. 2014, 117, 102.
  • Vanaja, M.; Paulkumar, K.; Baburaja, M.; Rajeshkumar, S.; Gnanajobitha, G.; Malarkodi, C.; Sivakavinesan, M.; Annadurai, G. Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg. Chem. Appl. 2014, 2014, 8.
  • Garcia, M. A. Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Physics D: Appl. Phys. 2011, 44, 283001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.