883
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of phenolic compounds and antioxidant activity of blueberries and modelization by artificial neural networks

, , , &

References

  • Adams, L.S., S. Phung, N. Yee, N.P. Seeram, L. Li, and S. Chen. 2010. Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res. 70(9):3594–3605. doi: 10.1158/0008-5472.CAN-09-3565.
  • Brand-Williams, W., M.E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28(1):25–30. doi: 10.1016/S0023-6438(95)80008-5.
  • Cabrera, A.C., and J.M. Prieto. 2010. Application of artificial neural networks to the prediction of the antioxidant activity of essential oils in two experimental in vitro models. Food Chem. 118(1):141–146. doi: 10.1016/j.foodchem.2009.04.070.
  • Cantín, C.M., I.S. Minas, V. Goulas, M. Jiménez, G.A. Manganaris, T.J. Michailides, and C.H. Crisosto. 2012. Sulfur dioxide fumigation alone or in combination with CO2-enriched atmosphere extends the market life of highbush blueberry fruit. Postharvest Biol. Technol. 67:84–91. doi: 10.1016/j.postharvbio.2011.12.006.
  • Chen, H., S. Cao, X. Fang, H. Mu, H. Yang, X. Wang, Q. Xu, and H. Gao. 2015. Changes in fruit firmness, cell wall composition and cell wall degrading enzymes in postharvest blueberries during storage. Sci. Hortic. 188:44–48. doi: 10.1016/j.scienta.2015.03.018.
  • Die, J.V., and L.J. Rowland. 2014. Elucidating cold acclimation pathway in blueberry by transcriptome profiling. Environ. Exp. Bot. 106:87–98. doi: 10.1016/j.envexpbot.2013.12.017.
  • Dragović-Uzelac, V., Z. Savić, A. Brala, B. Levaj, D.B. Kovačević, and A. Biško. 2010. Evaluation of phenolic content and antioxidant capacity of blueberry cultivars (Vaccinium corymbosum L.) Grown in the Northwest Croatia. Food Technol. Biotechnol. 48(2):214–221.
  • Duan, J., R. Wu, B.C. Strik, and Y. Zhao. 2011. Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biol. Technol. 59(1):71–79. doi: 10.1016/j.postharvbio.2010.08.006.
  • Eichholz, I., S. Huyskens-Keil, A. Keller, D. Ulrich, L.W. Kroh, and S. Rohn. 2011. UV-B-induced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinium corymbosum L.). Food Chem. 126(1):60–64. doi: 10.1016/j.foodchem.2010.10.071.
  • Folta, K.M., and C. Kole. 2011. Genetics, genomics and breeding of berries. Boca Raton, Florida: CRC Press.
  • Giongo, L., P. Poncetta, P. Loretti, and F. Costa. 2013. Texture profiling of blueberries (Vaccinium spp.) during fruit development, ripening and storage. Postharvest Biol. Technol. 76:34–39. doi: 10.1016/j.postharvbio.2012.09.004.
  • Gonçalves, C., R.P.F. Guiné, D.V.T.A. Costa, and F.J. Gonçalves. 2015. Evaluation of bioactive phenols in blueberries from different cultivars. Int. J. Biological. Food, Vet. Agric. Eng. 9(4):281–284.
  • Gonçalves, F.J., S.M. Rocha, and M.A. Coimbra. 2012. Study of the retention capacity of anthocyanins by wine polymeric material. Food Chem. 134(2):957–963. doi: 10.1016/j.foodchem.2012.02.214.
  • Granelli, G., L. Mariani, S. Parisi, T. Eccher, V. Ughini, R. Lo Scalzo, M. Buccheri, and G. Cortellino. 2012. Influence of genotype, location and year factors on quality and health promoting compounds of rubus fruits. Acta Hortic. 926:697–704. doi: 10.17660/ActaHortic.2012.926.101.
  • Guiné, R., M.J. Barroca, F. Gonçalves, M. Alves, S. Oliveira, and P. Correia. 2015a. Effect of drying on total phenolic compounds, antioxidant activity, and kinetics decay in pears. Int. J. Fruit Sci. 15(2):173–186.
  • Guiné, R.P.F., M.J. Barroca, F.J. Gonçalves, M. Alves, S. Oliveira, and M. Mendes. 2015b. Artificial neural network modelling of the antioxidant activity and phenolic compounds of bananas submitted to different drying treatments. Food Chem. 168:454–459. doi: 10.1016/j.foodchem.2014.07.094.
  • Guiné, R.P.F., S. Matos, D.V.T.A. Costa, and F. Gonçalves. 2015c. Statisical analysis of the factors that influence the properties of blueberries from cultivar bluecrop. Int. J. Biological. Biomole. Agricult. Food Biotechnol. Eng. 9(10):917–922.
  • Guiné, R.P.F., S. Matos, F. Gonçalves, D.V.T.A. Costa, and M. Mendes. 2015d. Modeling of the phenolic compounds and antioxidant activity of blueberries by artificial neural networks for data mining. p. 10. In Proceeding of the ICEUBI2015. Covilhã, Portugal.
  • Guiné, R.P.F., S.M.A. Soutinho, and F.J. Gonçalves. 2014. Phenolic compounds and antioxidant activity in red fruits produced in organic farming. Croat. J. Food Sci. Technol. 6(1):15–26.
  • Gutés, A., F. Céspedes, S. Alegret, and M. Del Valle. 2005. Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. Biosens. Bioelectron. 20(8):1668–1673. doi: 10.1016/j.bios.2004.07.026.
  • Hancock, J., P. Callow, S. Serçe, E. Hanson, and R. Beaudry. 2008. Effect of cultivar, controlled atmosphere storage, and fruit ripeness on the long-term storage of highbush blueberries. Hort Tech. 18(2):199–205.
  • Holzapfel, E.A., R.F. Hepp, and M.A. Mariño. 2004. Effect of irrigation on fruit production in blueberry. Agric. Water Manag. 67(3):173–184. doi: 10.1016/j.agwat.2004.02.008.
  • Koca, I., and B. Karadeniz. 2009. Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Sci. Hortic. 121(4):447–450. doi: 10.1016/j.scienta.2009.03.015.
  • Meneses, N.G.T., S. Martins, J.A. Teixeira, and S.I. Mussatto. 2013. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation Purif. Technol. 108:152–158. doi: 10.1016/j.seppur.2013.02.015.
  • Miller, N.J., C. Rice-Evans, M.J. Davies, V. Gopinathan, and A. Milner. 1993. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 84(4):407–412. doi: 10.1042/cs0840407.
  • Prior, R.L., X. Wu, L. Gu, T. Hager, A. Hager, S. Wilkes, and L. Howard. 2009. Purified berry anthocyanins but not whole berries normalize lipid parameters in mice fed an obesogenic high fat diet. Mol. Nutr. Food Res. 53(11):1406–1418. doi: 10.1002/mnfr.200900026.
  • Santos, S.C.R.V.L., R.P.F. Guiné, and A. Barros. 2014. Effect of drying temperatures on the phenolic composition and antioxidant activity of pears of Rocha variety (Pyrus communis L.). Food Measure. 8(2):105–112. doi: 10.1007/s11694-014-9170-y.
  • Shi, J., Z. Pan, T.H. McHugh, D. Wood, E. Hirschberg, and D. Olson. 2008. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT Food Sci. Technol. 41(10):1962–1972. doi: 10.1016/j.lwt.2008.01.003.
  • Stoner, G.D., L.-S. Wang, and B.C. Casto. 2008. Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries. Carcinogenesis 29(9):1665–1674. doi: 10.1093/carcin/bgn142.
  • Vats, S., and S. Negi. 2013. Use of artificial neural network (ANN) for the development of bioprocess using Pinus roxburghii fallen foliages for the release of polyphenols and reducing sugars. Bioresour. Technol. 140:392–398. doi: 10.1016/j.biortech.2013.04.106.
  • Wolfe, K.L., X. Kang, X. He, M. Dong, Q. Zhang, and R.H. Liu. 2008. Cellular antioxidant activity of common fruits. J. Agric. Food Chem. 56(18):8418–8426. doi: 10.1021/jf801381y.
  • Wu, X., G.R. Beecher, J.M. Holden, D.B. Haytowitz, S.E. Gebhardt, and R.L. Prior. 2004. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 52(12):4026–4037. doi: 10.1021/jf049696w.
  • Wu, X., J. Kang, C. Xie, R. Burris, M.E. Ferguson, T.M. Badger, and S. Nagarajan. 2010. Dietary blueberries attenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzyme expression. J. Nutr. 140(9):1628–1632. doi: 10.3945/jn.110.123927.
  • Xi, J., Y. Xue, Y. Xu, and Y. Shen. 2013. Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols. Food Chem. 141(1):320–326. doi: 10.1016/j.foodchem.2013.02.084.
  • Youdim, K.A., B. Shukitt-Hale, A. Martin, H. Wang, N. Denisova, P.C. Bickford, and J.A. Joseph. 2000. Short-term dietary supplementation of blueberry polyphenolics: beneficial effects on aging brain performance and peripheral tissue function. Nutr. Neurosci. 3(6):383–397. doi: 10.1080/1028415X.2000.11747338.
  • Zhou, Q., C. Ma, S. Cheng, B. Wei, X. Liu, and S. Ji. 2014a. Changes in antioxidative metabolism accompanying pitting development in stored blueberry fruit. Postharvest Biol. Technol. 88:88–95. doi: 10.1016/j.postharvbio.2013.10.003.
  • Zhou, Q., C. Zhang, S. Cheng, B. Wei, X. Liu, and S. Ji. 2014b. Changes in energy metabolism accompanying pitting in blueberries stored at low temperature. Food Chem. 164:493–501. doi: 10.1016/j.foodchem.2014.05.063.
  • Zielinska, M., P. Sadowski, and W. Błaszczak. 2015. Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.). LWT Food Sci. Technol. 62(1, Part 2):555–563. doi: 10.1016/j.lwt.2014.08.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.