2,444
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Drought Effects on Growth, Water Content and Osmoprotectants in Four Olive Cultivars with Different Drought Tolerance

ORCID Icon, , &

References

  • Angelopoulos, K., B. Dichio, and C. Xiloyannis. 1996. Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering. J. Exp. Bot 47(8):1093–1100. doi: 10.1093/jxb/47.8.1093.
  • Anjum, S.A., L.C. Wang, M. Farooq, I. Khan, and L.L. Xue. 2011a. Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defense system and yield in soybean under drought. J. Agron. Crop. Sci 197:296–301. doi: 10.1111/j.1439-037X.2011.00468.x.
  • Anjum, S.A., X. Xie, L.C. Wang, M.F. Saleem, C. Man, and W. Lei. 2011b. Morphological, physiological and biochemical responses of plants to drought stress. Afric. J. Agric. Res 6(9):2026–2032. doi: 10.5897/AJAR10.027.
  • Ashraf, M., and M.R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot 59:206–216. doi: 10.1016/j.envexpbot.2005.12.006.
  • Bacelar, E., C. Correia, D. Santos, J. Moutinho-Pereira, B. Goncalves, T.E. Ferreira, and J.M. Torres-Pereira. 2004. Leaf gas exchange, chlorophyll fluorescence and oxidative damage in olive trees under two irrigation regimes. Acta. Physiol. Plant 26(3):172.
  • Bacelar, E.A., D.L. Santos, J.M. Moutinho-Pereir, C.G. Berta, H. Alves, F. Ferreira, and C.M. Correia. 2006. Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: changes on structure and chemical composition of foliage and oxidative damage. Plant Sci 170:596–605. doi: 10.1016/j.plantsci.2005.10.014.
  • Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress. Plant Soil 39:205–207. doi: 10.1007/BF00018060.
  • Blum, A., and E. Ebercon. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci 21:43–47. doi: 10.2135/cropsci1981.0011183X002100010013x.
  • Bosabalidis, A.M., and G. Kofidis. 2002. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci 163(2):375–379. doi: 10.1016/S0168-9452(02)00135-8.
  • Burton, A.J., K.S. Pregitzer, G.P. Zogg, and D.R. Zak. 1998. Drought reduces root respiration in sugar maple forests. J. App. Ecol 8:771–778. doi: 10.1890/1051-0761(1998)008[0771:DRRRIS]2.0.
  • Buysee, J., and R. Merckx. 1993. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot 44:1627–1629. doi: 10.1093/jxb/44.10.1627.
  • Celan, G., B. Dichio, G. Montanaro, V. Nuzzo, A.M. Palese, and C. Xiloyannis. 1999. Distribution of dry matter and amount of mineral elements in irrigated and non-irrigated olive trees. Acta Hortic 474:381–384. doi: 10.17660/ActaHortic.1999.474.79.
  • Chakhchar, A., M. Lamaoui, S. Aissam, A. Ferradous, S. Wahbi, A.E. Mousadik, S. Ibnsouda-Koraichi, A. Filali-Maltouf, and C. El Modafar. 2017. Electrolyte ions and glutathione enzymes as stress markers in Argania spinosa subjected to drought stress and recovery. Afric. J. Biotechnol 16(1):10–21. doi: 10.5897/AJB2016.15234.
  • Chakhchar, A., M. Lamaoui, S. Wahbi, A. Ferradous, A. El Mousadik, S. Ibnsouda- Koraichi, A. Filali-Maltouf, and C.E. Modafar. 2015. Leaf water status, osmoregulation and secondary metabolism as a model for depicting drought tolerance in Argania spinosa. Acta Physiol. Planta 37(4):80–96. doi: 10.1007/s11738-015-1833-8.
  • Demiral, T., and I. Turkan. 2004. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J. Plant Physiol. 161:1089–1110. doi: 10.1016/j.jplph.2004.03.009.
  • Demiral, T., and I. Türkan. 2006. Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ. Exp. Bot 56(1):72–79.2. doi: 10.1016/j.envexpbot.2005.01.005.
  • Dichio, B., C. Xiloyannis, A. Sofo, and G. Montanaro. 2006. Osmotic regulation in leaves and roots of olive trees during a water deficit and rewatering. Tree Physiol 26(2):179–185. doi: 10.1093/treephys/26.2.179.
  • Eakes, D.J., R.D. Wright, and R. Seiler. 1991. Potassium nutrition and moisture stress tolerance of salvia. Hortic. Sci 26:422.
  • Guerfel, M., O. Baccouri, D. Boujnah, W. Chaïbi, and M. Zarrouk. 2009. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci. Hortic 119(3):257–263. doi: 10.1016/j.scienta.2008.08.006.
  • Hsiao, T.C. 1973. Plant responses to water stress. Ann. Rev. Plant Physiol 24:519–570. doi: 10.1146/annurev.pp.24.060173.002511.
  • Huang, B. 2001. Nutrient accumulation and associated root characteristics in response to drought stress in tall fescue cultivars. HortScience 36(1):148–152.
  • Ings, J., L.A. Mur, P.R. Robson, and M. Bosch. 2013. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus × giganteus. Front. Plant Sci 4:468–475. doi: 10.3389/fpls.2013.00468.
  • Kameli, A., and D.M. Losel. 1996. Growth and sugar accumulation in durum wheat plants under water stress. New. Phytol 132:57–62. doi: 10.1111/j.1469-8137.1996.tb04508.x.
  • Karimi, S., S. Eshghi, S. Karimi, and S. Hasan-Nezhadian. 2017. Inducing salt tolerance in sweet corn by magnetic priming. Acta Agric. Slov 109(1):89–102. doi: 10.14720/aas.2017.109.1.09.
  • Karimi, S., S. Hojati, S. Eshghi, R.N. Moghaddam, and S. Jandoust. 2012a. Magnetic exposure improves tolerance of fig ‘Sabz’ explants to drought stress induced in vitro. Sci. Hortic 137:95–99. doi: 10.1016/j.scienta.2012.01.018.
  • Karimi, S., M. Rahemi, S. Eshghi, M. Maftoun, and V. Tavallali. 2009. Effects of long-term salinity on growth and performance of two pistachio (Pistacia vera L.) rootstocks. Aust. J. Basic. App. Sci 3(3):1630–1639.
  • Karimi, S., A. Yadollahi, K. Arzani, and A. Imani. 2015. Gas exchange response of almond genotypes to water stress. Photosynthetica 53(1):29–34. doi: 10.1007/s11099-015-0070-0.
  • Karimi, S., A. Yadollahi, R.A. Nazari-Moghadam, A. Imani, and K. Arzani. 2012b. In vitro screening of almond (Prunus dulcis (Mill.)) genotypes for drought tolerance. J. Biol. Environ. Sci 6(18):263–270.
  • Liu, F., and H. Stützel. 2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Sci. Hortic 102:15–27. doi: 10.1016/j.scienta.2003.11.014.
  • Ma, Y.Y., W.Y. Song, Z.H. Liu, H.M. Zhang, X.L. Guo, H.B. Shao, and F.T. Ni. 2009. The dynamic changing of Ca2+ cellular localization in maize leaflets under drought stress. Comp. Rend. Boil 332(4):351–362. doi: 10.1016/j.crvi.2008.12.003.
  • Marschner, H. 2011. Marschner’s mineral nutrition of higher plants. Academic Press, USA. isbn 9780123849052.
  • McCready, R.M., J. Guggolz, V. Silviera, and H.S. Owens. 1950. Determination of starch and amylase in vegetables. Analyt. Chem 22:1156–1158. doi: 10.1021/ac60045a016.
  • Nayyar, H., and D. Gupta. 2006. Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. J. Biol. Environ. Exp. Bot 58:106–113. doi: 10.1016/j.envexpbot.2005.06.021.
  • Ohashi, Y., N. Nakayama, H. Saneoka, and K. Fujita. 2006. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biol. Plant 50(1):138–141. doi: 10.1016/j.envexpbot.2005.06.021.
  • Oliveira, E.M.M., H.A. Ruiz, V.H. Alvarez, P.A. Ferreira, F.O. Costa, and I.C.C. Almeida. 2010. Nutrient supply by mass flow and diffusion to maize plants in response to soil aggregate size and water potential. Rev. Brasil. Ciên. Solo 34:317–327. doi: 10.1590/S0100-06832010000200005.
  • Osone, Y., A. Ishida, and M. Tateno. 2008. Correlation between relative growth rate and specific leaf area requires associations of specific leaf area with nitrogen absorption rate of roots. New. Phytol 179(2):417–427. doi: 10.1111/j.1469-8137.2008.02476.x.
  • Rahemi, M., S. Karimi, S. Sedaghat, and A.A. Rostami. 2017. Physiological responses of olive cultivars to salinity stress. Adv. Hortic. Sci 31(1):53–59. doi: 10.13128/ahs-20726.
  • Raza, M.A.S., M.F. Saleem, G.M. Shah, I.H. Khan, and A. Raza. 2014. Exogenous application of glycinebetaine and potassium for improving water relations and grain yield of wheat under drought. J. Soil. Sci. Plant Nutr 14:348–364.
  • Rhizopoulou, S., D. Meletiou-Christou, and S. Diamantoglou. 1991. Water relation for sun and shade leaves of four Mediterranean evergreen sclerophylls. J. Exp. Bot 42:627–635. doi: 10.4067/S0718-95162014005000028.
  • Sanchez, F.J., M. Manzanares, E.F. De Andres, J.L. Tenorio, and L. Ayerbe. 1998. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field. Crop. Res 59:225–235. doi: 10.1016/S0378-4290(98)00125-7.
  • Scheepens, J.F., E.S. Frei, and J. Stöcklin. 2010. Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes. Oecologia 164(1):141–150. doi: 10.1007/s00442-010-1650-0.
  • Silva, M.D.A., J.L. Jifon, J.A. Da Silva, and V. Sharma. 2007. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz. J. Plant Physiol. 19(3):193–201. doi: 10.1590/S1677-04202007000300003.
  • Sircelj, H., M. Tausz, D. Grill, and F. Batic. 2007. Detecting different level of drought stress in apple trees (Malus domestica Borkh) with selected biochemical and physiological Parameters. Sci. Hortic 113:362–369. doi: 10.1016/j.scienta.2007.04.012.
  • Sivritepe, N., U. Erturk, C. Yerlikaya, I. Turkan, M. Bor, and F. Ozdemir. 2008. Response of the cherry rootstock to water stress induced in vitro. Biol. Plant 52:573–576. doi: 10.1007/s10535-008-0114-4.
  • Sofo, A., B. Dichio, C. Xiloyannis, and A. Masia. 2004. Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree. Plant Sci 166:293–302. doi: 10.1016/j.plantsci.2003.09.018.
  • Sofo, A., B. Dichio, C. Xiloyannis, and A. Masia. 2005. Antioxidant defenses in olive trees during drought stress: changes in activity of some antioxidant enzymes. Funct. Plant Biol 32(1):45–53. doi: 10.1071/FP04003.
  • Solomon, A., S. Golubowicz, S. Yablowicz, S. Grossman, M. Bergman, and H.F. Gottlieb. 2006. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J. Agri. Food Chem 54:7717–7723. doi: 10.1021/jf060497.
  • Tandon, H.L.S. 1998. Methods of analysis of soils, plants, waters and fertilizers. Fertilizer Development and Consultation Organization, New Delhi, India. doi: 10.1007/s10661-005-9133-1.
  • Tausz, M., A. Wonisch, J. Peters, M.S. Jimenez, D. Morales, and D. Grill. 2001. Short-term changes in free radical scavengers and chloroplast pigments in Pinus canariensis needles as affected by mild drought stress. J. Plant Physiol 158:213–219. doi: 10.1078/0176-1617-00178.
  • Tavallali, V., S. Karimi, and O. Espargham. 2017. Boron enhances antioxidative defense in the leaves of salt-affected Pistacia vera seedlings Hortic. J. doi: 10.2503/hortj.OKD-062.
  • Verslues, P.E., M. Agaraal, S. Katiyar-Agaraal, and J. Zhu. 2006. Methods and concepts in quantifying resistance to drought salt and freezing, abiotic stressed that affect plant status. Plant J 45:523–539. doi: 10.1111/j.1365-313X.2005.02593.x.
  • Vitagliano, C., and L. Sebastiani. 2002. Physiological and biochemical remarks on environmental stress in olive (Olea europaea L.). Acta Hortic 586:435–440. doi: 10.17660/ActaHortic.2002.586.89.
  • Wang, X., I. Mohamed, Y. Xia, and F. Chen. 2014. Effects of water and potassium stresses on potassium utilization efficiency of two cotton genotypes. J. Soi. Sci. Plant Nutr 14(4):833–844.
  • Zhu, J.K. 2001. Plant salt tolerance. Trend. Plant Sci 6:66–71. doi: 10.1016/S1360-1385(00)01838-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.