1,334
Views
15
CrossRef citations to date
0
Altmetric
Articles

Positive effects of plant growth regulators on physiology responses of Fragaria × ananassa cv. Camarosa’ under salt stress

, &

References

  • Abu-Ghalia, H., and S. El-Khalal. 2001. Interaction between mycorrhizal fungi and Jasmonic acid and their effects upon the growth, and metabolic activities of lupine plants grown under saline conditions. Egyptian J. Bot. 41:201–206.
  • Al-Hakimi, A.M.A., and A.M. Hamada. 2001. Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate. Biol. Plant. 44:253–261.
  • Amini, F., and A.A. Ehsanpour. 2005. Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. Am. J. Biochem. Biotech. 1(4):204–208.
  • Asgari, H.R., W. Cornelis, and P.V. Damme. 2012. Salt stress effect on wheat (Triticum aestivum L.) growth and leaf ion concentrations. Int. J. Plant Prod. 6(2):195–208.
  • Baninasab, B., and M.R. Baghbanha. 2013. Influence of salicylic acid pre-treatment on emergence and early seedling growth of cucumber (Cucumis sativus) under salt stress. Int. J. Plant Prod. 7(2):187–220.
  • Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39:205–207.
  • EI-Tayeb, M.A. 2005. Response of barley gains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–225.
  • Engelberth, J., T. Koch, G. Schuler, N. Bachmannu, J. Rechtenbach, and W. Boland. 2001. Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signalling in lima bean. Plant Physiol. 125:369–377.
  • Eraslan, F., A. Inal, A. Gunes, and M. Alpaslan. 2007. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci. Hort. 113:120–128.
  • FAO. 2005. Global network on integrated soil management for sustainable use of salt-affected soils. FAO Land and Plant Nutrition Management Service, Rome, Italy. <http://www.fao.org/ag/agl/agll/spush>.
  • FAO. 2012. FAOSTAT. <http://faostat.fao.org>.
  • Farida, M.S., A.R. Sakhabutdinova, M.V. Bezrukova, R.A. Fatkhutdinova, and D.R. Fatkhutdinova. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322.
  • Figen, E., A. Inal, A. Gunes, and M. Alpaslan. 2007. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci. Hort. 113:120–128.
  • Faghih, S., Ghobadi C., and A. Zarei. 2017. Response of strawberry plant cv. ‘Camarosa’ to salicylic acid and methyl jasmonate application under salt stress condition. Plant Growth Regul., 36(3): 651–659. doi: 10.1007/s00344-017-9666-x.
  • Ghorbani, M.J., A. Sorooshzadeh, F. Moradi, S.A.M.M. Sanavy, and I. Allahdadi. 2011. The role of phytohormones in alleviating salt stress in crop plants. Aust. J. Crop Sci. 5(6):726–734.
  • Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E.G., and N. Cicek. 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maiz (Zea mays L.) grown under salinity. Plant Physiol. 164:728–736.
  • Gupta, B., and B. Huang. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genomics. ID 701596:18. doi: 10.1155/2014/701596.
  • Hare, P., W.A. Cress, and J. Van Staden. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553.
  • Horvath, E., G. Szalai, and T. Janda. 2007. Induction of abiotic stress tolerance by salicylic acid signaling. Plant Growth Regul 26:290–300.
  • Houmani, H., and F.J. Corpas. 2016. Differential responses to salt-induced oxidative stress in three phylogenetically related plant species: arabidopsis thaliana (glycophyte), Thellungiella salsuginea and Cakile maritima (halophytes). Involvement of ROS and NO in the control of K+/Na+ homeostasis. AIMS Biophysics 3(3):380–397. doi: 10.3934/biophy.2016.3.380.
  • Huang, Z., L. Zhao, D. Chen, M. Liang, Z. Liu, H. Shao, and X. Long. 2013. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS ONE 8(4):e62085. doi: 10.1371/journal.pone.0062085.
  • Idrees, M., Naeem, M., Aftab, T., Khan, MMA. and Moinuddin. 2011. Salicylic acid mitigates salinity stress by improving antioxidant defense system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiol. Plant. 33:987. doi: 10.1007/s11738-010-063.
  • Jamali, B., B. Eshghi, and B. Kholdebarin. 2016. Antioxidant responses of ‘Selva’ strawberry as affected by salicylic acid under salt stress. J Berry Res Pp :1–11. doi: 10.3233/JBR-160130.
  • James, R.A., C. Blake, C.S. Byrt, and R. Munns. 2011. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J. Exp. Bot. 62(8):2939–2947.
  • Kang, D.J., Y.J. Seo, J.D. Lee, R. Ishii, K.U. Kim, D.H. Shin, S.K. Park, S.W. Jang, and I.J. Lee. 2005. Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J. Agron. Crop Sci. 191(4):273–282.
  • Kaya, C., H. Kirnak, D. Higgs, and K. Saltali. 2002. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high salinity. Sci. Hort. 93:65–74.
  • Keutgen, A.J., and E. Pawelzik. 2009. Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environ. Exp. Bot. 65:170–176.
  • Khan, W., B. Prithiviraj, and S.L. Donald. 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. Plant Physiol 160:485–492.
  • Li, T., Y. Hu, X. Du, H. Tang, C. Shen, and J. Wu. 2014. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS One 9(10):e109492. doi: 10.1371/journal.pone.0109492.
  • Lutts, S., J.M. Kinet, and J. Bouharmont. 1996. NaCl induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annu. Bot 78:389–398.
  • Manan, A., C.M. Ayyub, M. Aslam Pervez, and R. Ahmad. 2016. Methyl Jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical and physiological processes. Pak. J. Agri. Sci.. 53(1):35–41.
  • Neelam, M., and P. Saxena. 2009. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Sci 177:181–189.
  • Pankova, Y.I., and M.V. Konyushkova. 2013. Effect of global warming on soil salinity of the arid regions. Russ. Agri. Sci. 39:464. doi: 10.3103/S106836741306.
  • Rahat, N., N. Iqbal, S.S. Nafees, and A. Khan. 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Plant Physiol 168:807–815.
  • Salimi, F., F. Shekari, and J. Hamzei. 2016. Methyl jasmonate improves salinity resistance in German chamomile (Matricaria chamomilla L.) by increasing activity of antioxidant enzymes. Acta Physiol. Plant. 38:1. doi: 10.1007/s11738-015–2023-4.
  • Sheteawa, S.S. 2007. Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascobin. Int. J. Agri. Biol. 9(3):473–478.
  • Stevens, J., T. Senaratna, and K. Sivasithamparam. 2006. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): Associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul 49:77–83.
  • Sun, Y., G. Niu, R. Wallace, J. Masabni, and M. Gu. 2015. Relative salt tolerance of seven strawberry cultivars. Horticulturae 1(1):27–43. doi: 10.3390/horticulturae1010027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.