1,329
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Optimization of Infrared-convective Drying of White Mulberry Fruit Using Response Surface Methodology and Development of a Predictive Model through Artificial Neural Network

, ORCID Icon, &
Pages S1015-S1035 | Published online: 02 Jul 2020

References

  • Afolabi, T.J., T.Y. Tunde-akintunde, and J.A. Adeyanju. 2015. Mathematical modeling of drying kinetics of untreated and pretreated cocoyam slices. J. Food Sci. Technol. 52(5):2731–2740. doi: 10.1007/s13197-014-1365-z.
  • Aghilinategh, N., S. Rafiee, S. Hosseinpour, M. Omid, and S.S. Mohtasebi. 2015. Optimization of intermittent microwave–convective drying using response surface methodology. Food Sci. Nutrition 3(4):331–341. doi: 10.1002/fsn3.224.
  • Amiri Chayjan, R., M. Kaveh, N. Dibagar, and M.Z. Nejad. 2017. Optimization of pistachio nut drying in a fluidized bed dryer with microwave pretreatment applying response surface methodology. Chem. Prod. Process Model. 12(3). doi: 10.1515/cppm-2016-0048.
  • Amiri Chayjan, R., M. Kaveh, and S. Khayati. 2014. Modeling some drying characteristics of sour cherry (Prunus cerasus L.) under infrared radiation using mathematical models and artificial neural networks. Agric. Eng. Int. 16(1):265–279.
  • Amiri Chayjan, R., K. Salari, and H. Barikloo. 2012. Modelling moisture diffusivity of pomegranate seed cultivars under fixed, semi fluidized and fluidized bed using mathematical and neural network methods. Acta Sci. Polym. Technol. Aliment 11(2):137–49: 10. doi: 1515/cppm-2013-0009.
  • Amiripour, M., M.B. Habibi-najafi, M. Mohebbi, and B. Emadi. 2015. Optimization of osmo-vacuum drying of pear (Pyrus communis L.) using response surface methodology. Food Measure 9(3):269–280. doi: 10.1007/s11694-015-9232-9.
  • Bey, M.B., H. Louaileche, and S. Zemouri. 2013. Optimization of phenolic compound recovery and antioxidant activity of light and dark dried fig (Ficus carica L.) varieties. Food Sci Biotechnol. 22: 1613–1619. doi. 10.1007/s10068-013-0258-7.
  • Changrue, V., V. Orsat, G.S.V. Raghavan, and D. Lyew. 2008. Effect of osmotic dehydration on the dielectric properties of carrots and strawberries. J. Food Eng. 88(2):280–286. doi: 10.1016/j.jfoodeng.2008.02.012.
  • Chen, Q., J. Bi, X. Wu, J. Yi, L. Zhou, and Y. Zhou. 2015. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short- and medium-wave infrared radiation. LWT - Food Sci Technol 64(2):759–766. doi: 10.1016/j.lwt.2015.06.071.
  • Cruz, A.C., R.P.F. Guiné, and J.C. Gonçalves. 2015. Drying kinetics and product quality for convective drying of apples (cvs. Golden Delicious and Granny Smith). Int. J. Fruit Sci. 15(1):54–78. doi: 10.1080/15538362.2014.931166.
  • Das, A., U. Raychaudhuri, and R. Chakraborty. 2014. Optimization of wheatgrass fortified steamed rice cake using response surface methodology. J Food Res Technol 2(2):24–30.
  • Doymaz, I., S. Karasu, and M. Baslar. 2016. Effects of infrared heating on drying kinetics, antioxidant activity, phenolic content, and color of jujube fruit. Food Measure 10(2):283–291. doi: 10.1007/s11694-016-9305-4.
  • El-mesery, H.S., and G. Mwithiga. 2015. Performance of a convective, infrared and combined infrared- convective heated conveyor-belt dryer. J. Food Sci. Technol. 52(5):2721–2730. doi: 10.1007/s13197-014-1347-1.
  • Fan, H., S.Q. Shao, and C.Q. Tian. 2014. Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control. Appl. Energy 113(6):883–890. doi: 10.1016/j.apenergy.2013.08.043.
  • Fealekari, M., and R. Amiri Chayjan. 2014. Optimization of convective drying process for Persian shallot using response surface method (RSM). Agric. Eng. Int CIGR J 16(2):157–166.
  • Golpour, I., R. Amiri Chayjan, J. Amiri Parian, and J. Khazaei. 2015. Prediction of paddy moisture content during thin layer drying using machine vision and artificial neural networks. J. Agric. Sci. Technol. 17(2):287–298.
  • Golpour, I., M.Z. Nejad, R.A. Chayjan, A.M. Nikbakht, R.P. Guiné, and M. Dowlati. 2017. Investigating shrinkage and moisture diffusivity of melon seed in a microwave assisted thin layer fluidized bed dryer. Food Measure 11(1):1–11. doi: 10.1007/s11694-016-9365-5.
  • Guiné, R.P.F., S. Pinho, and M.J. Barroca. 2011. Study of the convective drying of pumpkin (Cucurbita maxima). Food Bioprod. Process 89(4):422–428. doi: 10.1016/j.fbp.2010.09.001.
  • Hammouda, I., and D. Mihoubi. 2014. Comparative numerical study of kaolin clay with three drying methods: Convective, convective–microwave and convective infrared modes. Energy Conver. Manag.. 87:832–839. doi: 10.1016/j.enconman.2014.07.085.
  • Huang, L., D. Wu, H. Jin, J. Zhang, Y. He, and C. Lou. 2011. Internal quality determination of fruit with bumpy surface using visible and near infrared spectroscopy and chemometrics: A case study with mulberry fruit. Biosystem Eng 109(4):377–384. doi: 10.1016/j.biosystemseng.2011.05.003.
  • Kantrong, H., A. Tansakul, and G.S. Mittal. 2014. Drying characteristics and quality of shiitake mushroom undergoing microwave-vacuum drying and microwave-vacuum combined with infrared drying. J. Food Sci. Technol. 51(12):3594–3608. doi: 10.1007/s13197-012-0888-4.
  • Kaveh, M., R. Amiri Chayjan, and A.M. Nikbakht. 2017. Mass transfer characteristics of eggplant slices during length of continuous band dryer. Heat Mass Transf 53(6):2045–2059. doi: 10.1007/s00231-016-1961-8.
  • Kaveh, M., and R.A. Chayjan. 2015. Mathematical and neural network modeling of terebinth fruit under fluidized bed drying. Res Agric. Eng. 61(2):55–65. doi: 10.17221/56/2013-RAE.
  • Kaveh, M., R.A. Chayjan, E. Taghinezhad, V.R. Sharabiani, and A. Motevali. 2020. Evaluation of specific energy consumption and GHG emissions for different drying methods (case study: Pistacia atlantica). J. Clean. Prod. 259:120963. doi: 10.1016/j.jclepro.2020.120963.
  • Kaveh, M., V.R. Sharabiani, R. Amiri Chayjan, E. Taghinezhad, Y. Abbaspour-Gilandeh, and I. Golpour. 2018. ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato, garlic and cantaloupe drying under convective hot air dryer. Inform Process Agric.. 5:372–387. doi: 10.1016/j.inpa.2018.05.003.
  • Khazaei, N.B., T. Tavakoli, H. Ghassemian, M.H. Khoshtaghaza, and A. Banakar. 2013. Applied machine vision and artificial neural network for modeling and controlling of the grape drying process. Comput. Electron Agric.. 98:205–213. doi: 10.1016/j.compag.2013.08.010.
  • Khir, R., Z. Pan, A. Salim, B.R. Hartsough, and S. Mohamed. 2011. Moisture diffusivity of rough rice under infrared radiation drying. LWT - Food Sci. Technol. 44(4):1126–1132. doi: 10.1016/j.lwt.2010.10.003.
  • Liu, Y., Y. Sun, S. Miao, F. Li, and D. Luo. 2015. Drying characteristics of ultrasound assisted hot air drying of Flos Lonicerae. J. Food Sci. Technol. 52(8):4955–4964. doi: 10.1007/s13197-014-1612-3.
  • Mota, C.L., C. Luciano, A. Dias, M.J. Barroca, and R.P.F. Guiné. 2010. Convective drying of onion: Kinetics and nutritional evaluation. Food Bioprod. Process 88(2–3):115–123. doi: 10.1016/j.fbp.2009.09.004.
  • Motevali, A., and S.R. Tabatabaei. 2017. A comparison between pollutants and greenhouse gas emissions from operation of different dryers based on energy consumption of power plants. J. Clean. Prod. 154:455–461. doi: 10.1016/j.jclepro.2017.03.219.
  • Niamnuy, C., M. Nachaisin, N. Poomsa-ad, and S. Devahastin. 2012. Kinetic modelling of drying and conversion/degradation of isoflavones during infrared drying of soybean. Food Chem. 133(3):946–952. doi: 10.1016/j.foodchem.2012.02.010.
  • Omolola, A.O., P.F. Kapila, and H.M. Silungwe. 2018. Mathematical modeling of drying characteristics of Jew’s mallow (Corchorus olitorius) leaves. Inform. Process Agric. 6(1):109–115. doi: 10.1016/j.inpa.2018.08.003.
  • Onwude, D.I., N. Hashim, K. Abdan, R. Janius, and G. Chen. 2018. Investigating the influence of novel drying methods on sweet potato (Ipomoea batatas L.): Kinetics, energy consumption, color, and microstructure. J. Food Process. Eng. 41(4):e12686. doi: 10.1111/jfpe.12686.
  • Rad, S.J., M. Kaveh, V.R. Sharabiani, and E. Taghinezhad. 2018. Fuzzy logic, artificial neural network and mathematical model for prediction of white mulberry drying kinetics. Heat Mass Transfer 54(11):3361–3374. doi: 10.1007/s00231-018-2377-4.
  • Salehi, F., and M. Kashaninejad. 2018b. Modeling of moisture loss kinetics and color changes in the surface of.lemon slice during the combined infrared-vacuum drying. Inform Process Agric. 5(4):516–523. doi: 10.1016/j.inpa.2018.05.006.
  • Serrano, D., I. Golpour, and S. Sánchez-Delgado. 2020. Predicting the effect of bed materials in bubbling fluidized bed gasification using artificial neural networks (ANNs) modeling approach. Fuel. 266:117021. doi: 10.1016/j.fuel.2020.117021.
  • Sharma, G.P., and P. Prasad. 2006. Optimization of process parameters for microwave drying of garlic cloves. J. Food Eng. 75(4):441–446. doi: 10.1016/j.jfoodeng.2005.04.029.
  • Shi, Q.L., C.H. Xue, Y. Zhao, Z.J. Li, X.Y. Wang, and D.L. Luan. 2008. Optimization of processing parameters of horse mackerel (Trachurus japonicus) dried in a heat pump dehumidifier using response surface methodology. J Food Eng 87(1):74–81. doi: 10.1016/j.jfoodeng.2007.11.010.
  • Silva, B.G.D., A.M.F. Fileti, and O.P. Taranto. 2015. Drying of Brazilian Pepper-Tree Fruits (Schinus terebinthifolius Raddi): Development of classical models and artificial neural network approach. Chem. Eng. Commun. 202(8):1089–1097. doi: 10.1080/00986445.2014.901220.
  • Song, X., H. Hao, and Z. Baoling. 2016. Drying characteristics of chinese yam (Dioscorea opposita Thunb.) by far-infrared radiation and heat pump. J. Saudi Soc. Agric. Sci.17(3):290–296. doi: 10.1016/j.jssas.2016.05.008.
  • Sumic, Z., A. Vakula, A. Tepic, J. Cakarevic, J. Vitas, and B. Pavlic. 2016. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chem. 203:465–475. doi: 10.1016/j.jssas.2016.05.008.
  • Taghinezhad, E., M. Kaveh, A. Jahanbakhshi, and I. Golpour. 2019. Use of artificial intelligence for the estimation of effective moisture diffusivity, specific energy consumption, color and shrinkage in quince drying. J. Food Process Eng e13358. doi: 10.1111/jfpe.13358.
  • Vijayan, K., B. Saratchandra, and J.A.A. Silva. 2011. Germplasm conservation in mulberry (Morus spp.). Scientia Horticulturae 2011(128):371–379. doi: 10.1016/j.scienta.2010.11.012.
  • Zhu, Y., Z. Pan, T.H. Mchugh, D.M. Barrett, M. Amiripour, M.B. Habibi-Najafi, M. Mohebbi, and B. Emadi. 2010. Processing and quality characteristics of apple slices processed under simultaneous infrared dry-blanching and dehydration with intermittent heating. J. Food Eng. 97(1):8–16. doi: 10.1016/j.jfoodeng.2009.07.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.