2,378
Views
17
CrossRef citations to date
0
Altmetric
Article

Ornamental Date Palm and Sidr Trees: Fruit Elements Composition ‎and Concerns Regarding Consumption

ORCID Icon, &

References

  • Abdulaal, W.H., M. Zeyadi, O. Baothman, M.A. Zamzami, H. Choudhry, Y.Q. Almulaiky, R. Saleh, and S.A. Mohamed. 2017. Investigation of antioxidant and detoxifying capacities of some date cultivars (Phoenix dactylifera L.) irrigated with sewage water. J. RSC Adv. 7(21):12953–12958. doi: 10.1039/C6RA28760C.
  • Ahmed, Z.F.R., A.K.H. Alnuaimi, A. Askri, and N. Tzortzakis. 2021c. Evaluation of Lettuce (Lactuca sativa L.) production under hydroponic system: Nutrient solution derived from fish waste vs. Inorganic nutrient solution. Horticulturae. 7:292. doi: 10.3390/horticulturae7090292.
  • Ahmed, Z.F.R., F.Y.Y. Al Shaibani, N. Kaur, S. Maqsood, and G. Schmeda-Hirschmann. 2021b. Improving fruit quality, bioactive compounds, and storage life of date palm (Phoenix dactylifera L., cv. Barhi) using natural elicitors. Horticulturae. 7:293. doi: 10.3390/horticulturae7090293.
  • Ahmed, Z.F., S.A. Alblooshi, N. Kaur, S. Maqsood, and G. Schmeda-Hirschmann. 2021a. Synergistic effect of preharvest spray application of natural elicitors on storage life and bioactive compounds of date palm (Phoenix dactylifera L., cv. Khesab). Horticulturae. 7:145–161. doi: 10.3390/horticulturae7060145.
  • Al Juhaimi, F., M.M. Özcan, N. Uslu, K. Ghafoor, E.E. Babiker, and I.A. Mohamed Ahmed. 2020. Bioactive properties, fatty acid compositions, and phenolic compounds of some date palm (Phoenix dactylifera L.) cultivars. J. Food Process. Preserv. 44:e14432. doi: 10.1111/jfpp.14432.
  • Al-Khlaifat, A.L., and O.A. Al-Khashman. 2007. Atmospheric heavy metal pollution in Aqaba city, Jordan, using Phoenix dactylifera L. Leaves. Atmospheric Environ. 41:8891–8897. doi: 10.1016/j.atmosenv.2007.08.028.
  • Al-Shahib, W., and R.J. Marshall. 2003. The fruit of the date palm: Its possible use as the best food for the future? Int. J. Food Sci. Nutr. 54:247–259.
  • Aldjain, I., M. Al-Whaibi, S. Al-showiman, and M.H. Siddiqui. 2011. Determination of heavy metals in the fruit of date palm growing at different locations of Riyadh. Saudi J. Biol. Sci. 182:175–180. doi: 10.1016/j.sjbs.2010.12.001.
  • Alhakmani, F., S.A. Khan, and A. Ahmad. 2014. Determination of total phenol, in-vitro antioxidant and anti-inflammatory activity of seeds and fruits of Zizyphus spina-christi grown in Oman. Asian Pac. J. Trop. Med. 4:S656–S660. doi: 10.12980/APJTB.4.2014APJTB-2014-0273.
  • Alhusban, A.A., S.A. Ata, and S.A. Shraim. 2019. The safety assessment of toxic metals in commonly used pharmaceutical herbal products and traditional herbs for infants in Jordanian market. Biol. Trace Element Res. 187:307–315. doi: 10.1007/s12011-018-1367-1.
  • Amoo, I.A., and V.N. Atasie, Environment. 2012. Nutritional and functional properties of Tamarindus indica pulp and Zizyphus spinachristi fruit and seed. J. Food, Agric. 10:16–19.
  • Antonious, G.F., and T.S. Kochhar. 2009. Mobility of heavy metals from soil into hot pepper fruits: A field study. Bull. Environ. Contam. Toxicol. 82(1):59–63. doi: 10.1007/s00128-008-9512-8.
  • ATSDR. (Agency for Toxic Substances and Diseases Registry), 2005. Toxicological profile for lead. U.S. Department of health and human services, public health services. Accessed 16 December 2015. http://www.atsdr.cdc.gov/toxprofiles/tp13.pdf
  • Brima, E.I. 2019. Evaluation of selected essential elements in Khalas dates from date palm etermined by inductively coupled plasma-mass spectrometry. Int. J. Anal. Chem. 2019:7619692. doi: 10.1155/2019/7619692.
  • Davison, W., I. Pulford, and H. Flowers. 2007. Environmental chemistry at a glance. J. Atmospheric Chem. 57:105. doi: 10.1007/s10874-006-9054-6.
  • Dghaim, R., S.A. Khatib, H. Rasool, M.A. Khan, and P. Health. 2015. Determination of heavy metals concentration in traditional herbs commonly consumed in the United Arab Emirates. J. Environ. Public Health. 2015. doi: 10.1155/2015/973878.
  • El Hadrami, A., and J. Al-Khayri. 2012. Socioeconomic and traditional importance of date palm. Emir. J. Food. Agric. 25:371–385.
  • Habib, H.M., and W.H. Ibrahim. 2011. Nutritional quality of 18 date fruit varieties. Int. J. Food Sci. Nutr. 62(5):544–551. doi: 10.3109/09637486.2011.558073.
  • Hawkes, J.S. 1997. Heavy metals. Edu. J. Chem. 74:1369–1374. doi: 10.1021/ed074p1374.
  • Hseu, Z.-Y. 2004. Evaluating heavy metal contents in nine composts using four digestion methods. Bioresource Tech. 95:53–59. doi: 10.1016/j.biortech.2004.02.008.
  • Jin, T., M. Nordberg, W. Frech, X. Dumont, A. Bernard, T.T. Ye, Q. Kong, Z. Wang, P. Li, N.G. Lundström, et al. 2002. Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (ChinaCad). Biometals 15(4):397–410. doi: 10.1023/A:1020229923095.
  • Jones, J.B., Jr. 1998. Plant nutrition manual. CRC Press, New York.
  • Korfali, S.I., T. Hawi, and M. Mroueh. 2013. Evaluation of heavy metals content in dietary supplements in Lebanon. Chem. Cent. J. 7(1):10. doi: 10.1186/1752-153X-7-10.
  • Kuras, M.J., M. Zielińska-Pisklak, J. Duszyńska, and J. Jabłońska. 2020. Determination of the elemental composition and antioxidant properties of dates (Phoenix dactyliferia) originated from different regions. J. Food Sci. Tech. 57(8):2828–2839. doi: 10.1007/s13197-020-04314-8.
  • Mahurpawar, M. 2015. Effects of heavy metals on human health. Int. J. Reseacrh-Granthaalayah. 3:1–7. doi: 10.29121/granthaalayah.v3.i9SE.2015.3282.
  • Mattar, M.A., S.S. Soliman, and R.S. Al-Obeed. 2021. Effects of various quantities of three irrigation water types on yield and fruit quality of ‘Succary’ date palm. Agronomy 11(4):796. doi: 10.3390/agronomy11040796.
  • Mia, M.A., M.G. Mosaib, M.I. Khalil, M.A. Islam, and S.H. Gan. 2020. Potentials and safety of date palm fruit against diabetes. A Crit. Rev. Foods (Basel Switzerland) 9(11):1557.
  • Nagajyoti, P.C., K.D. Lee, and T. Sreekanth. 2010. Heavy metals, occurrence and toxicity for plants: A review. J Environ. Chem. Lett. 8:199–216. doi: 10.1007/s10311-010-0297-8.
  • Njenga, L.W., D.M. Maina, D.N. Kariuki, and F. Mwangi. 2007. Aluminium exposure from vegetables and fresh raw vegetable juices in Kenya. Int. J. Food Agric. 5:8–11.
  • Nyanga, L., T. Gadaga, M. Nout, E.J. Smid, T. Boekhout, and M. Zwietering. 2013. Nutritive value of masau (Ziziphus mauritiana) fruits from Zambezi Valley in Zimbabwe. J. Food Chem. 138(1):168–172. doi: 10.1016/j.foodchem.2012.10.016.
  • Osman, M.A., and M.A. Ahmed. 2009. Chemical and proximate composition of (Zizyphus spina‐christi) nabag fruit. Nutr. Food Sci. 39:70–75. doi: 10.1108/00346650910930842.
  • Perveen, K., and N.A. Bokahri. 2020. Comparative analysis of chemical, mineral and in-vitro antibacterial activity of different varieties of date fruits from Saudi Arabia. Saudi J. Biol. Sci. 27(7):1886–1891. doi: 10.1016/j.sjbs.2019.11.029.
  • Pillay, A.E., J.R. Williams, M.O. El Mardi, S.M. Al-Lawati, M.H. Al-Hadabbi, and A. Al-Hamdi. 2003. Risk assessment of chromium and arsenic in date palm leaves used as livestock feed. Environ. Int. 29(5):541–545. doi: 10.1016/S0160-4120(03)00011-4.
  • Plum, L.M., L. Rink, and H. Haase. 2010. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health. 7:1342–1365. doi: 10.3390/ijerph7041342.
  • Radwan, M.A., and A.K. Salama. 2006. Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem. Toxicol. 44:1273–1278. doi: 10.1016/j.fct.2006.02.004.
  • Rambabu, K., G. Bharath, A. Hai, F. Banat, S.W. Hasan, H. Taher, and H.F. Mohd Zaid. 2020. Nutritional quality and physico-chemical characteristics of selected date fruit varieties of the United Arab Emirates. Processes 8(3):256. doi: 10.3390/pr8030256.
  • Salama, K.F., M.A. Randhawa, A.A.A. Mulla, and O.A. Labib. 2019. Heavy metals in some date palm fruit cultivars in Saudi Arabia and their health risk assessment. Int. J. Food Properties. 22:1684-1692.
  • Sall, M.L., A.K.D. Diaw, D. Gningue-Sall, S. Efremova Aaron, and J.J. Aaron. 2020. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ. Sci. Pollution Res. Int. 27(24):29927–29942. doi: 10.1007/s11356-020-09354-3.
  • Salomón-Torres, R., R. Krueger, J.P. García-Vázquez, R. Villa-Angulo, C. Villa-Angulo, N. Ortiz-Uribe, J.A. Sol-Uribe, and L. Samaniego-Sandoval. 2021. Date palm pollen: Features, production, extraction and pollination methods. Agronomy 11(3):504. doi: 10.3390/agronomy11030504.
  • SAS, 2009 I.I. SAS® SAS online doc. Version 9. 2 copyright 2009 SAS Institute Inc., Cary, NC, USA (2009)
  • Siddiqi, S.A., S. Rahman, M.M. Khan, S. Rafiq, A. Inayat, M.S. Khurram, T. Seerangurayar, and F. Jamil. 2020. Potential of dates (Phoenix dactylifera L). as natural antioxidant source and functional food for healthy diet. Sci.Total Environ. 748:141234. doi: 10.1016/j.scitotenv.2020.141234.
  • United States environmental Protection Agency (USEPA) 3015A “Microwave assisted acid digestion of sediments, sludge and oils” Revision 1, January 1998
  • Weaver, C. 2013. Potassium and health. Adv. Nutr. 4(3):368S–377S. doi: 10.3945/an.112.003533.
  • Williams, J.R., and A. Pillay. 2009. Monitoring nickel uptake in date palms from nickel-contaminated soil. Res. J. Chem. Environ. 13:5–9.
  • Yasin, B.R., H.A. El-Fawal, and S.A. Mousa. 2015. Date (Phoenix dactylifera) polyphenolics and other bioactive compounds: A traditional islamic remedy’s potential in prevention of cell damage, cancer therapeutics and beyond. Int. J. Mol. Sci. 16(12):30075–30090. doi: 10.3390/ijms161226210.