2,279
Views
6
CrossRef citations to date
0
Altmetric
Article

Pseudomonas Isolates as Potential Biofungicides of Green Mold (Penicillium Digitatum) on Orange Fruit

ORCID Icon, , , , , , , ORCID Icon, , & show all

References

  • Anticona M., J. Blesa, A. Frigola, and M. J. Esteve. 2020. High biological value compounds extraction from citruswaste with non-conventional methods. Foods. 9(6):811. doi:10.3390/foods9060811
  • Askarne, L., I. Talibi, H. Boubaker, E.H. Boudyach, F. Msanda, B. Saadi, M.A. Serghini, and A. Ait Ben Aoumar. 2012. In vitro and in vivo antifungal activity of several Moroccan plants against Penicillium italicum, the causal agent of citrus blue mold. Crop Prot. 40:53–58. doi: 10.1016/j.cropro.2012.04.023.
  • Bakker A. W., and B. Schippers.1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biol. Biochem. 19(4): 451–57. doi:10.1016/0038-0717(87)90037-X
  • Bhatia, S., and S. Singh. 2021. Inhibition of siderophores in blocking fungal infection. Fungal Siderophores: From Mineral--Microbe Interactions to Anti-Pathogenicity, p. 13–31. In: Springer, Cham. doi: 10.1007/978-3-030-53077-8_2
  • Boubaker, H., B. Saadi, E.H. Boudyach, and A.A. Benaoumar. 2009. Sensitivity of Penicillium digitatum and P. italicum to Imazalil and Thiabendazole in Morocco. Plant Pathol. J. 8(4):152–158. doi: 10.3923/ppj.2009.152.158.
  • Brown, G., and W.R. Miller. 1999. Maintaining fruit healthy after harvest. APS Press St. Paul, MN, 175–188.
  • Bryk, H., P. Sobiczewski, and B. Dyki. 1998. Antagonistic effect of Erwinia herbicola on in vitro spore germination and germ tube elongation of Botrytis cinerea and Penicillium expansum. BioControl. 43:97–106. doi: 10.1023/A:1009914612914.
  • Cattelan, A.J., P.G. Hartel, and J.J. Fuhrmann. 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63:1670–1680. doi: 10.2136/sssaj1999.6361670x.
  • Chernin, L., Z. Ismailov, S. Haran, and I. Chet. 1995. Chitinolytic enterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol. 61:1720–1726. doi: 10.1128/aem.61.5.1720-1726.1995.
  • Chidi, F., A. Bouhoudan, and M. Khaddor. 2020. Antifungal effect of the tea tree essential oil (Melaleuca alternifolia) against Penicillium griseofulvum and Penicillium verrucosum. J. King Saud Univ. Sci. 32:2041–2045. doi: 10.1016/j.jksus.2020.02.012.
  • de Sousa Oliveira, M.I., A.A. Chaibub, T.P. Sousa, M.V.C.B. Cortes, A.C.A. de Souza, E.C. Da Conceição, and M.C.C. de Filippi. 2020. Formulations of Pseudomonas fluorescens and Burkholderia pyrrocinia control rice blast of upland rice cultivated under no-tillage system. Biol. Control. 144:104153. doi: 10.1016/j.biocontrol.2019.104153.
  • Dhuldhaj, U., and U. Pandya. 2021. Diversity, function, and application of fungal iron chelators (Siderophores) for integrated disease management. In: G. Seneviratne, and J.S. Zavahir (eds.). Role of microbial communities for sustainability. Microorganisms for sustainability. p. 259–288. In Springer, Singapore . doi: 10.1007/978-981-15-9912-5_10
  • Droby, S., V. Vinokur, B. Weiss, L. Cohen, A. Daus, E.E. Goldschmidt, and R. Porat. 2002. Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology. 92:393–399. doi: 10.1094/PHYTO.2002.92.4.393.
  • El-Tarabily, K.A. 2006. Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall-degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can. J. Bot. 84:211–222. doi: 10.1139/b05-153.
  • Elshafie, H., I. Camele, R. Racioppi, L. Scrano, N. Iacobellis, S. Bufo, H.S. Elshafie, I. Camele, R. Racioppi, L. Scrano, et al. 2012. In vitro antifungal activity of Burkholderia gladioli pv. agaricicola against some phytopathogenic fungi. Int. J. Mol. Sci. 13:16291–16302. doi: 10.3390/ijms131216291.
  • Errampalli, D., and N.R. Brubacher. 2006. Biological and integrated control of postharvest blue mold (Penicillium expansum) of apples by Pseudomonas syringae and cyprodinil. Biol. Control. 36:49–56. doi: 10.1016/J.BIOCONTROL.2005.07.011.
  • Fiddaman, P.J., and S. Rossall. 1993. The production of antifungal volatiles by Bacillus subtilis. J. Appl. Bacteriol. 74:119–126. doi: 10.1111/j.1365-2672.1993.tb03004.x.
  • Gao, P., J. Qin, D. Li, S. Zhou, and Y.-W. He. 2018. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. PLoS One. 13:e0190932. doi: 10.1371/journal.pone.0190932.
  • Holmes, G.J., and J.W. Eckert. 1999. Sensitivity of Penicillium digitatum and P. italicum to postharvest Citrus Fungicides in California. Phytopathology. 89:716–721. doi: 10.1094/PHYTO.1999.89.9.716.
  • Huang, Y., B.J. Deverall, and S.C. Morris. 1995. Postharvest control of green mould on oranges by a strain of Pseudomonas glathei and enhancement of its biocontrol by heat treatment. Postharvest Biol. Technol. 5:129–137. doi: 10.1016/0925-5214(94)00016-L.
  • Hussien, A., Y. Ahmed, A.-H. Al-Essawy, and K. Youssef. 2018. Evaluation of different salt-amended electrolysed water to control postharvest moulds of citrus. Trop. Plant Pathol. 43:10–20. doi: 10.1007/s40858-017-0179-8.
  • Jaaffar, A.K.M., J.A. Parejko, T.C. Paulitz, D.M. Weller, and L.S. Thomashow. 2017. Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic acid and biological control by Phenazine-producing Pseudomonas spp. Phytopathology. 107:692–703. doi: 10.1094/PHYTO-07-16-0257-R.
  • Janisiewicz, W.J., and J. Roitman. 1988. Biological control of blue mold and gray mould on apple and pear with Pseudomonas cepacia. Phytopathology 78(12):1697–1700. doi: 10.1094/Phyto-78-1697.
  • Jaouad, M., A. Moinina, S. Ezrari, and R. Lahlali. 2020. Key pests and diseases of citrus trees with emphasis on root rot diseases: An overview. J. Agri. Sci. 1(3):149–160.
  • Kanan, G.J., and R.A. Al-Najar. 2008. In vitro antifungal activities of various plant crude extracts and fractions against Citrus post-harvest disease agent Penicillium digitatum. Jordan J. Biol. Sci. 1:89–99.
  • Kaur, R., R.S. Singh, and C. Alabouvette. 2007. Antagonistic activity of selected isolates of fluorescent Pseudomonas against Fusarium oxysporum f. sp. ciceri. Asian J. Plant Sci. 6:446–454. doi: 10.3923/ajps.2007.446.454.
  • Kong, W.-L., P.-S. Li, X.-Q. Wu, T.-Y. Wu, and X.-R. Sun. 2020. Forest tree associated bacterial diffusible and volatile organic compounds against various phytopathogenic fungi. Microorganisms. 8:590. doi: 10.3390/microorganisms8040590.
  • Kumari, S., and V. Khanna. 2014. Effect of antagonistic Rhizobacteria coinoculated with Mesorhizobium ciceris on control of Fusarium wilt in chickpea (Cicer arietinum L.). African J. Microbiol. Res. 8:1255–1265. doi: 10.5897/ajmr2013.6481.
  • Leelasuphakul, W., P. Hemmanee, and S. Chuenchitt. 2008. Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biol. Technol. 48:113–121. doi: 10.1016/j.postharvbio.2007.09.024.
  • López-Reyes, L., M.G. Carcaño-Montiel, T.L. Lilia, G. Medina-de La Rosa, and T.H.R. Armando. 2017. Antifungal and growth-promoting activity of Azospirillum brasilense in Zea mays L. ssp. mexicana. Arch. Phytopathol. Pflanzenschutz 50(13–14):727–743. doi: 10.1080/03235408.2017.1372247.
  • Lugtenberg, B., and F. Kamilova. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541–556. doi: 10.1146/annurev.micro.62.081307.162918.
  • Mitter, B., A. Petric, P. SG Chain, F. Trognitz, J. Nowak, S. Compant, and A. Sessitsch. 2013. Genome analysis, ecology, and plant growth promotion of the endophyte Burkholderia phytofirmans strain PsJN, p. 865–874. In: Molecular microbial ecology of the rhizosphere. F. J. de Bruijn (Ed.),John Wiley & Sons, Inc, Hoboken, NJ, USA. doi: 10.1002/9781118297674.ch81.
  • Moin, S., S.A. Ali, K.A. Hasan, A. Tariq, V. Sultana, J. Ara, and S. Ehteshamul-Haque. 2020. Managing the root rot disease of sunflower with endophytic fluorescent Pseudomonas associated with healthy plants. Crop Prot. 130:105066. doi: 10.1016/j.cropro.2019.105066.
  • Noreen, R., S.A. Ali, K.A. Hasan, V. Sultana, J. Ara, and S. Ehteshamul-Haque. 2015. Evaluation of biocontrol potential of fluorescent Pseudomonas associated with root nodules of mungbean. Crop Prot. 75:18–24. doi: 10.1016/j.cropro.2015.04.018.
  • Paulin, M.M., A. Novinscak, C. Lanteigne, V.J. Gadkar, and M. Filion. 2017. Interaction between 2,4-diacetylphloroglucinol- and hydrogen cyanide-producing Pseudomonas brassicacearum LBUM300 and Clavibacter michiganensis subsp. michiganensis in the tomato rhizosphere. Appl. Environ. Microbiol. 83:e00073–17. doi: 10.1128/AEM.00073-17.
  • Pena, L.C., G.H. Jungklaus, D.C. Savi, L. Ferreira-Maba, A. Servienski, B.H.L.N.S. Maia, V. Annies, L.V. Galli-Terasawa, C. Glienke, and V. Kava. 2019. Muscodor brasiliensis sp. nov. produces volatile organic compounds with activity against Penicillium digitatum. Microbiol. Res. 221:28–35. doi: 10.1016/j.micres.2019.01.002.
  • Qessaoui, R., A. Amarraque, H. Lahmyed, A. Ajerrar, E.H. Mayad, B. Chebli, A.S. Walters, R. Bouharroud, and K. Del-Claro. 2020. Inoculation of tomato plants with rhizobacteria suppresses development of whitefly Bemisia tabaci (GENNADIUS) (HEMIPTERA: ALEYRODIDAE): Agro-ecological application. PLoS One. 15:e0231496. doi: 10.1371/journal.pone.0231496.
  • Qessaoui, R., H. Lahmyed, A. Ajerrar, J. Furze, T. Paulitz, M. Alouani, B. Chebli, E.H. Mayad, and B. R. 2021. Rhizospheric solutions: Pseudomonas isolates counter Botrytis cinerea on tomato. AFRIMED AJ –Al Awamia 131:50–72. http://196.200.148.132/index.php/AFRIMED/article/view/81/46
  • Qessaoui, R., R. Bouharroud, J.N. Furze, M. El Aalaoui, H. Akroud, A. Amarraque, J. Vaerenbergh, R. Van Tahzima, E.H. Mayad, and B. Chebli. 2019. Applications of new rhizobacteria Pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Sci. Rep. 9:12832. doi: 10.1038/s41598-019-49216-8.
  • Romanazzi, G., S.M. Sanzani, Y. Bi, S. Tian, P.G. Martíneze, and N. Alkan. 2016. Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol. Technol. 122:82–94. doi: 10.1016/j.postharvbio.2016.08.003.
  • Rouissi, W., L. Ugolini, C. Martini, L. Lazzeri, and M. Mari. 2013. Control of postharvest fungal pathogens by antifungal compounds from Penicillium expansum. J. Food Prot. 76:1879–1886. doi: 10.4315/0362-028X.JFP-13-072.
  • Schwyn, B., and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47–56. doi: 10.1016/0003-2697(87)90612-9.
  • Shrivastava, P., and R. Kumar. 2018. Actinobacteria: Eco-friendly candidates for control of plant diseases in a sustainable manner. New Futur. Dev. Microb. Biotechnol. Bioeng. 79–91. doi: 10.1016/B978-0-444-63994-3.00005-9.
  • Spadaro, D., and M.L. Gullino. 2004. State of the art and future prospects of the biological control of postharvest fruit diseases. Int. J. Food Microbiol. 91:185–194. doi: 10.1016/S0168-1605(03)00380-5.
  • Taqarort, N., A. Echairi, R. Chaussod, R. Nouaim, H. Boubaker, A.A. Benaoumar, and E. Boudyach. 2008. Screening and identification of epiphytic yeasts with potential for biological control of green mold of citrus fruits. World J. Microbiol. Biotechnol. 24:3031–3038. doi: 10.1007/s11274-008-9849-5.
  • Torres-León, C., R. Parra-Saldívar, R. De La Cruz-quiroz, M. Tranier, S. Saldaña-Mendoza, S. Roussos, A.C. Flores-Gallegos, C.N. Aguilar, G. Martinez-Medina, K. Nathiely Ramírez-Guzmán, et al. 2018. Biocontrol agents as strategy of agro-ecosystem management to restitution of productive soils for food production, p. 185–213. In: Phytobiont and ecosystem restitution V. Kumar et al. (eds.),Springer, Singapore. doi: 10.1007/978-981-13-1187-1_10.
  • Tripathi, P., and N. Dubey. 2004. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol. Technol. 32:235–245. doi: 10.1016/J.POSTHARVBIO.2003.11.005.
  • Valverde, C., G.G. Anta, and G. Ferraris. 2015. Pseudomonas and azospirillum, p. 389–409. Handbook for Azospirillum: Technical issues and protocols. In Cassán FD, Okon Y, Creus CM(eds), Springer International Publishing, Cham. Springer International Publishing. doi: 10.1007/978-3-319-06542-7_21.
  • Wallace, R.L., D.L. Hirkala, and L.M. Nelson. 2017. Postharvest biological control of blue mold of apple by Pseudomonas fluorescens during commercial storage and potential modes of action. Postharvest Biol. Technol. 133:1–11. doi: 10.1016/j.postharvbio.2017.07.003.
  • Wang, Z., M. Jiang, K. Chen, K. Wang, M. Du, Z. Zalán, F. Hegyi, and J. Kan. 2018. Biocontrol of Penicillium digitatum on postharvest citrus fruits by Pseudomonas fluorescens. J. Food Qual. 2018:1–10. doi: 10.1155/2018/2910481.
  • Yu, X., C. Ai, L. Xin, and G. Zhou. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47(2):138–145. doi: 10.1016/J.EJSOBI.2010.11.001.
  • Zhong, G., and E. Nicolosi. 2020. Citrus origin, diffusion, and economic importance. Springer, Cham, 5–21.
  • Zhu, J.-W., Q. Xie, and H. Li. 2006. Occurrence of imazalil-resistant biotype of Penicillium digitatum in China and the resistant molecular mechanism. J. Zhejiang Univ. A. 7:362–365. doi: 10.1631/jzus.2006.as0362.