273
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Anthocyanins and the Antioxidant Capacities of Wild Berries that Grow in Shizuoka, Japan

, , , &

References

  • Akoka, S., L. Barantin, and M. Trierweiler. 1999. Concentration measurement by proton NMR using the ERETIC method. Anal. Chem. 71(13):2554–2557. doi: 10.1021/ac981422i.
  • Azzini, E., J. Giacometti, and G.L. Russo. 2017. Antiobesity effects of anthocyanins in preclinical and clinical studies. Oxid Med Cell Longev. 2017:2740364. doi: 10.1155/2017/2740364.
  • Bae, H.-S., H.J. Kim, J.H. Kang, R. Kudo, T. Hosoya, S. Kumazawa, M. Jun, O.-Y. Kim, and M.-R. Ahn. 2015. Anthocyanin profile and antioxidant activity of various berries cultivated in Korea. Nat. Prod. Commun. 10(6):963–968. doi: 10.1177/1934578X1501000643.
  • Blando, F., C. Gerardi, M. Renna, S. Castellano, and F. Serio. 2018. Characterisation of bioactive compounds in berries from plants grown under innovative photovoltaic greenhouses. J. Berry. Res. 8(1):5569. doi: 10.3233/JBR-170258.
  • Deighton, N., R. Brennan, C. Finn, and H.V. Davies. 2000. Antioxidant properties of domesticated and wild Rubus species. J. Sci. Food Agric. 80(9):1307–1313. doi: 10.1002/1097-0010(200007)80:9<1307:AID-JSFA638>3.0.CO;2-P.
  • Giraudeau, P., V. Silvestre, and S. Akoka. 2015. Optimizing water suppression for quantitative NMR-based metabolomics: A tutorial review. Metabolomics 11(5):1041–1055. doi: 10.1007/s11306-015-0794-7.
  • Hosoya, T., M. Kubota, and S. Kumazawa. 2016. Analysis of anthocyanins using NMR and antioxidant activity in berries. Bunseki Kagaku 65(6):321–329. doi: 10.2116/bunsekikagaku.65.321.
  • Huang, D., B. Ou, and R.L. Prior. 2005. The chemistry behind antioxidant capacity assays. J. Agric. Food. Chem. 53(6):1841–1856. doi: 10.1021/JF030723C.
  • Kadowaki, W., Y. Sugahara, T. Toyoizumi, T. Nakajima, and S. Kumazawa. 2023. Isolation and identification of antioxidant phenylpropanoids from the fruit peel of Akebia trifoliata Koidz. Food Sci. Technol. Res. 29(1):27–34. doi: 10.3136/fstr.FSTR-D-22-00127.
  • Kaume, L., L.R. Howard, and L. Devareddy. 2012. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. J. Agric. Food. Chem. 60(23):5716–5727. doi: 10.1021/jf203318p.
  • Krga, I., and D. Milenkovic. 2019. Anthocyanins: From sources and bioavailability to cardiovascular health benefits and molecular mechanisms of action. J. Agric. Food. Chem. 67(7):1771–1783. doi: 10.1021/acs.jafc.8b06737.
  • Kubota, M., T. Hosoya, S. Fukumoto, T. Miyagi, and S. Kumazawa. 2014. Anti-melanogenic compounds in Rubus croceacanthus. J. Berry. Res. 4(3):127–135. doi: 10.3233/JBR-140075.
  • Kubota, M., C. Ishikawa, Y. Sugiyama, S. Fukumoto, T. Miyagi, and S. Kumazawa. 2012. Anthocyanins from the fruits of Rubus croceacanthus and Rubus sieboldii, wild berry plants from Okinawa, Japan. J. Food Comp. Anal 28(2):179–182. doi: 10.1016/j.jfca.2012.09.002.
  • Lopez-Corona, A.V., I. Valencia-Espinosa, F.A. González-Sánchez, A.L. Sánchez-López, L.E. Garcia-Amezquita, and R. Garcia-Varela. 2022. Antioxidant, anti-inflammatory and cytotoxic activity of phenolic compound family extracted from raspberries (Rubus idaeus): A general review. Antioxidants 11(6):1192. doi: 10.3390/antiox11061192.
  • Martins, M.S., A.C. Gonçalves, G. Alves, and L.R. Silva. 2023. Blackberries and mulberries: Berries with significant health-promoting properties. Int. J. Mol. Sci. 24(15):12024. doi: 10.3390/ijms241512024.
  • Mendes, L., V. De Freitas, P. Baptista, and M. Carvalho. 2011. Comparative antihemolytic and radical scavenging activities of strawberry tree (arbutus unedo L.) leaf and fruit. Food Chem. Toxicol. 49(9):2285–2291. doi: 10.1016/j.fct.2011.06.028.
  • Moriya, C., T. Hosoya, S. Agawa, Y. Sugiyama, I. Kozone, K. Shin-Ya, N. Terahara, and S. Kumazawa. 2015. New acylated anthocyanins from purple yam and their antioxidant activity. Biosci Biotechnol Biochem. 79(9):1484–1492. doi: 10.1080/09168451.2015.1027652.
  • Nilsson, J., D. Pillai, G. Onning, C. Persson, A. Nilsson, and B. Akesson. 2005. Comparison of the 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) methods to asses the total antioxidant capacity in extracts of fruit and vegetables. Mol. Nutr. Food Res. 49(3):239–246. doi: 10.1002/mnfr.200400083.
  • Ogawa, K., H. Sakakibara, R. Iwata, T. Ishii, T. Sato, T. Goda, K. Shimoi, and S. Kumazawa. 2008. Anthocyanin composition and antioxidant activity of the crowberry (empetrum nigrum) and other berries. J. Agric. Food. Chem. 56(12):4457–4462. doi: 10.1021/jf800406v.
  • Okumura, K., T. Hosoya, K. Kawarazaki, N. Izawa, and S. Kumazawa. 2016. Antioxidant activity of phenolic compounds from fava bean sprouts. J. Food Sci. 81(6):1394–1398. doi: 10.1111/1750-3841.13330.
  • Pehluvan, M., B.D. Çokran, and M.R. Bozhüyük. 2018. Effects of different harvest dates on some fruit quality parameters and health promoting compounds of Morus alba L. and Morus nigra L. fruit. Alinteri J. Agr. Sci 33(2):119–124. doi: 10.28955/alinterizbd.359409.
  • Ramirez, J.E., R. Zambrano, B. Sepúlveda, E.J. Kennelly, and M.J. Simirgiotis. 2015. Anthocyanins and antioxidant capacities of six Chilean berries by HPLC-HR-ESI-ToF-MS. Food Chem. 176(6):106–114. doi: 10.1016/j.foodchem.2014.12.039.
  • Ribeiro de Souza, D., J.L. Willems, and N.H. Low. 2019. Phenolic composition and antioxidant activities of Saskatoon berry fruit and pomace. Food Chem. 290(8):168–177. doi: 10.1016/j.foodchem.2019.03.077.
  • Sánchez-Moreno, C. 2002. Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int. 8(3):121–137. doi: 10.1177/1082013202008003770.
  • Schulz, M., S.K.T. Seraglio, F. Della Betta, P. Nehring, A.C. Valese, H. Daguer, L.V. Gonzaga, A.C.O. Costa, and R. Fett. 2019. Blackberry (Rubus ulmifolius Schott): Chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Food Res. Int. 122(8):627–634. doi: 10.1016/j.foodres.2019.01.034.
  • Singh, D.P., J. Beloy, J.K. Mclnerney, and L. Day. 2012. Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota). Food Chem. 132(3):1161–1170. doi: 10.1016/j.foodchem.2011.11.045.
  • Singleton, V.L., R. Orthofer, and R.M. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods. Enzymol. 299:152–178. doi: 10.1016/S0076-6879(99)99017-1.
  • Smeriglio, A., D. Barreca, E. Bellocco, and D. Trombetta. 2016. Chemistry, pharmacology and health benefits of anthocyanins. Phytother Res 30(8):1265–1286. doi: 10.1002/ptr.5642.
  • Tosun, M., S. Ercisli, H. Karlidag, and M. Sengul. 2009. Characterization of red raspberry (Rubus idaeus L.) genotypes for their physicochemical properties. J. Food Sci. 74(7):575–579. doi: 10.1111/j.1750-3841.2009.01297.x.
  • Tsuda, T. 2012. Anthocyanins as functional food factors – chemistry, nutrition and health promotion. Food Sci. Technol. Res. 18(3):315–324. doi: 10.3136/fstr.18.315.
  • Turbitt, J.R., K.L. Colson, K.B. Killday, A.M. Milstead, and C.C. Neto. 2020. Application of 1H-NMR-based metabolomics to the analysis of cranberry (Vaccinium macrocarpon) supplements. Phytochem Anal. 31(1):68–80. doi: 10.1002/pca.2867.
  • Van Hung, P. 2016. Phenolic compounds of cereals and their antioxidant capacity. Crit. Rev. Food Sci. Nutr. 56(1):25–35. doi: 10.1080/10408398.2012.708909.
  • Zafra-Stone, S., T. Yasmin, M. Bagchi, A. Chatterjee, J.A. Vinson, and D. Bagchi. 2007. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 51(6):675–683. doi: 10.1002/mnfr.200700002.