2,857
Views
46
CrossRef citations to date
0
Altmetric
Basic Research Papers

Autophagy regulates cytoplasmic remodeling during cell reprogramming in a zebrafish model of muscle regeneration

, , , , &
Pages 1864-1875 | Received 12 Feb 2016, Accepted 23 Jun 2016, Published online: 14 Sep 2016

References

  • Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol 2013; 15:713-20; PMID:23817233; http://dx.doi.org/10.1038/ncb2788
  • Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol 2010; 12:823-30; PMID:20811354; http://dx.doi.org/10.1038/ncb0910-823
  • Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 2010; 13:805-11; PMID:20581817; http://dx.doi.org/10.1038/nn.2575
  • Eng CH, Abraham RT. The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming. Oncogene 2011; 30:4687-96; PMID:21666712; http://dx.doi.org/10.1038/onc.2011.220
  • Hitchcock PF, Raymond PA. The teleost retina as a model for developmental and regeneration biology. Zebrafish 2004; 1:257-71; PMID:18248236; http://dx.doi.org/10.1089/zeb.2004.1.257
  • Rodrigues AM, Christen B, Marti M, Belmonte JC. Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae. Bmc Dev Biol 2012; 12:9; PMID:22369050; http://dx.doi.org/10.1186/1471-213X-12-9
  • Saera-Vila A, Kasprick DS, Junttila TL, Grzegorski SJ, Louie KW, Chiari EF, Kish PE, Kahana A. Myocyte dedifferentiation drives extraocular muscle regeneration in adult zebrafish. Invest Ophth Vis Sci 2015; 56:4977-93; http://dx.doi.org/10.1167/iovs.14-16103
  • Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science 2002; 298:2188-90; PMID:12481136; http://dx.doi.org/10.1126/science.1077857
  • Raya A, Koth CM, Buscher D, Kawakami Y, Itoh T, Raya RM, Sternik G, Tsai HJ, Rodríguez-Esteban C, Izpisúa-Belmonte JC. Activation of Notch signaling pathway precedes heart regeneration in zebrafish. P Natl Acad Sci USA 2003; 100:11889-95; http://dx.doi.org/10.1073/pnas.1834204100
  • Poss FD, Shen JX, Nechiporuk A, McMahon G, Thisse B, Thisse C, Thisse C, Keating MT. Roles for Fgf signaling during zebrafish fin regeneration. Dev Biol 2000; 222:347-58; PMID:10837124; http://dx.doi.org/10.1006/dbio.2000.9722
  • Pfefferli C, Jaźwińska A. The art of fin regeneration in zebrafish. Regeneration 2015; 2:72-83; http://dx.doi.org/10.1002/reg2.33
  • Goldman D. Muller glial cell reprogramming and retina regeneration. Nat Rev Neurosci 2014; 15:431-42; PMID:24894585; http://dx.doi.org/10.1038/nrn3723
  • Lenkowski JR, Raymond PA. Muller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res 2014; 40:94-123; PMID:24412518; http://dx.doi.org/10.1016/j.preteyeres.2013.12.007
  • Zhang RL, Han PD, Yang HB, Ouyang KF, Lee D, Lin YF, Ocorr K, Kang G, Chen J, Stainier DY, et al. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 2013; 498:497-501; PMID:23783515; http://dx.doi.org/10.1038/nature12322
  • Tanida I, Ueno T, Kominami E. LC3 and Autophagy. Methods Mol Biol 2008; 445:77-88; PMID:18425443; http://dx.doi.org/10.1007/978-1-59745-157-4_4
  • He CC, Bartholomew CR, Zhou WB, Klionsky DJ. Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos. Autophagy 2009; 5:520-6; PMID:19221467; http://dx.doi.org/10.4161/auto.5.4.7768
  • Hu ZY, Zhang JP, Zhang QY. Expression pattern and functions of autophagy-related gene atg5 in zebrafish organogenesis. Autophagy 2011; 7:1514-27; PMID:22082871; http://dx.doi.org/10.4161/auto.7.12.18040
  • Varga M, Sass M, Papp D, Takacs-Vellai K, Kobolak J, Dinnyes A, Klionsky DJ, Vellai T. Autophagy is required for zebrafish caudal fin regeneration. Cell Death Differ 2014; 21:547-56; PMID:24317199; http://dx.doi.org/10.1038/cdd.2013.175
  • Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007; 117:326-36; PMID:17235397; http://dx.doi.org/10.1172/JCI28833
  • Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005; 25:1025-40; PMID:15657430; http://dx.doi.org/10.1128/MCB.25.3.1025-1040.2005
  • Wang S, Xia PY, Rehm M, Fan Z. Autophagy and cell reprogramming. Cell Mol Life Sci 2015; 72:1699-713; PMID:25572296; http://dx.doi.org/10.1007/s00018-014-1829-3
  • Gurdon J. Nuclear reprogramming in eggs. Nat Med 2009; 15:1141-4; PMID:19812574; http://dx.doi.org/10.1038/nm1009-1141
  • Jopling C, Boue S, Belmonte JC. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Bio 2011; 12:79-89; http://dx.doi.org/10.1038/nrm3043
  • Semi K, Matsuda Y, Ohnishi K, Yamada Y. Cellular reprogramming and cancer development. Int J Cancer 2013; 132:1240-8; PMID:23180619; http://dx.doi.org/10.1002/ijc.27963
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663-76; PMID:16904174; http://dx.doi.org/10.1016/j.cell.2006.07.024
  • Pan HZ, Cai N, Li M, Liu GH, Belmonte JC. Autophagic control of cell “stemness'. Embo Mol Med 2013; 5:327-31; PMID:23495139; http://dx.doi.org/10.1002/emmm.201201999
  • Hansson J, Rafiee MR, Reiland S, Polo JM, Gehring J, Okawa S, Huber W, Hochedlinger K, Krijgsveld J. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep 2012; 2:1579-92; PMID:23260666; http://dx.doi.org/10.1016/j.celrep.2012.10.014
  • Mizushima N, Klionsky DJ. Protein turnover via autophagy: Implications for metabolism. Annu Rev Nutr 2007; 27:19-40; PMID:17311494; http://dx.doi.org/10.1146/annurev.nutr.27.061406.093749
  • Dou ZX, Xu CY, Donahue G, Shimi T, Pan JA, Zhu J, Ivanov A, Capell BC, Drake AM, Shah PP, et al. Autophagy mediates degradation of nuclear lamina. Nature 2015; 527:105-9; PMID:26524528; http://dx.doi.org/10.1038/nature15548
  • Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y, Nakatogawa H. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 2015; 522:359-62; PMID:26040717; http://dx.doi.org/10.1038/nature14506
  • Cho A, Noguchi S. Autophagy in GNE Myopathy. In: Bailly Y, ed. Autophagy - A Double-Edged Sword - Cell Survival or Death?, 2013
  • Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2015; 22:526-39; PMID:25526085; http://dx.doi.org/10.1038/cdd.2014.216
  • Bell RA, Al-Khalaf M, Megeney LA. The beneficial role of proteolysis in skeletal muscle growth and stress adaptation. Skelet Muscle 2016; 6:16; PMID:27054028; http://dx.doi.org/10.1186/s13395-016-0086-6
  • Luthi AU, Martin SJ. The CASBAH: a searchable database of caspase substrates. Cell Death Differ 2007; 14:641-50; PMID:17273173; http://dx.doi.org/10.1038/sj.cdd.4402103
  • Hashimoto T, Kikkawa U, Kamada S. Contribution of caspase(s) to the cell cycle regulation at Mitotic Phase. Plos One 2011; 6:e18449; PMID:21479177; http://dx.doi.org/10.1371/journal.pone.0018449
  • Zhang J, Kabra NH, Cado D, Kang C, Winoto A. FADD-deficient T cells exhibit a disaccord in regulation of the cell cycle machinery. J Biol Chem 2001; 276:29815-8; PMID:11390402; http://dx.doi.org/10.1074/jbc.M103838200
  • Frost V, Al-Mehairi S, Sinclair AJ. Exploitation of a non-apoptotic caspase to regulate the abundance of the cdkI p27(KIP1) in transformed lymphoid cells. Oncogene 2001; 20:2737-48; PMID:11420686; http://dx.doi.org/10.1038/sj.onc.1204367
  • Helfer B, Boswell BC, Finlay D, Cipres A, Vuori K, Kang TB, Wallach D, Dorfleutner A, Lahti JM, Flynn DC, et al. Caspase-8 promotes cell motility and calpain activity under nonapoptotic conditions. Cancer Res 2006; 66:4273-8; PMID:16618751; http://dx.doi.org/10.1158/0008-5472.CAN-05-4183
  • Kuranaga E. Beyond apoptosis: caspase regulatory mechanisms and functions in vivo. Genes Cells 2012; 17:83-97; PMID:22244258; http://dx.doi.org/10.1111/j.1365-2443.2011.01579.x
  • Lee Y, Grill S, Sanchez A, Murphy-Ryan M, Poss KD. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 2005; 132:5173-83; PMID:16251209; http://dx.doi.org/10.1242/dev.02101
  • Floss T, Arnold HH, Braun T. A role for FGF-6 in skeletal muscle regeneration. Gene Dev 1997; 11:2040-51; PMID:9284044; http://dx.doi.org/10.1101/gad.11.16.2040
  • Dvorak P, Dvorakova D, Hampl A. Fibroblast growth factor signaling in embryonic and cancer stem cells. Febs Lett 2006; 580:2869-74; PMID:16516203; http://dx.doi.org/10.1016/j.febslet.2006.01.095
  • Saera-Vila A, Kish PE, Kahana A. Fgf regulates dedifferentiation during skeletal muscle regeneration in adult zebrafish. Cell Signal 2016; 28(9):1196-1204; PMID:27267062; http://dx.doi.org/10.1016/j.cellsig.2016.06.001
  • Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth F R 2005; 16:233-47; http://dx.doi.org/10.1016/j.cytogfr.2005.01.007
  • Corcelle E, Dierbi N, Mari M, Nebout M, Fiorini C, Fenichel P, Hofman P, Poujeol P, Mograbi B. Control of the autophagy maturation step by the MAPK ERK and p38 - Lessons from environmental carcinogens. Autophagy 2007; 3:57-9; PMID:17102581; http://dx.doi.org/10.4161/auto.3424
  • Kang C, You YJ, Avery L. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Gene Dev 2007; 21:2161-71; PMID:17785524; http://dx.doi.org/10.1101/gad.1573107
  • Higashijima S, Okamoto H, Ueno N, Hotta Y, Eguchi G. High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev Biol 1997; 192:289-99; PMID:9441668; http://dx.doi.org/10.1006/dbio.1997.8779
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001; 25:402-8; PMID:11846609; http://dx.doi.org/10.1006/meth.2001.1262
  • Craig SE, Thummel R, Ahmed H, Vasta GR, Hyde DR, Hitchcock PF. The Zebrafish Galectin Drgal1-L2 is expressed by proliferating muller glia and photoreceptor progenitors and regulates the regeneration of rod photoreceptors. Invest Ophth Vis Sci 2010; 51:3244-52; http://dx.doi.org/10.1167/iovs.09-4879
  • Ramachandran R, Fausett BV, Goldman D. Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol 2010; 12:1101-U106; PMID:20935637; http://dx.doi.org/10.1038/ncb2115
  • Thummel R, Bai S, Sarras MP, Song PZ, McDermott J, Brewer J, Perry M, Zhang X, Hyde DR, Godwin AR. Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb. Dev Dynam 2006; 235:336-46; http://dx.doi.org/10.1002/dvdy.20630
  • Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. P Natl Acad Sci USA 2008; 105:2415-20; http://dx.doi.org/10.1073/pnas.0712168105
  • Saera-Vila A, Kish PE, Kahana A. Automated scalable heat shock modification for standard aquatic housing systems. Zebrafish 2015; 12:312-4; PMID:25942613; http://dx.doi.org/10.1089/zeb.2015.1087