3,200
Views
29
CrossRef citations to date
0
Altmetric
Views and Commentaries

Pexophagy is responsible for 65% of cases of peroxisome biogenesis disorders

Pages 991-994 | Received 16 Dec 2016, Accepted 02 Feb 2017, Published online: 20 Mar 2017

References

  • Waterham HR, Ferdinandusse S, Wanders RJ. Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta 2016; 1863(5):922-33; PMID:26611709; http://dx.doi.org/10.1016/j.bbamcr.2015.11.015
  • Waterham HR, Ebberink MS. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta 2012; 1822(9):1430-41; PMID:22871920; http://dx.doi.org/10.1016/j.bbadis.2012.04.006
  • Fujiki Y, Nashiro C, Miyata N, Tamura S, Okumoto K. New insights into dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p in shuttling of PTS1-receptor Pex5p during peroxisome biogenesis. Biochim Biophys Acta 2012; 1823(1):145-9; PMID:22079764; http://dx.doi.org/10.1016/j.bbamcr.2011.10.012
  • Grimm I, Saffian D, Platta HW, Erdmann R. The AAA-type ATPases Pex1p and Pex6p and their role in peroxisomal matrix protein import in Saccharomyces cerevisiae. Biochim Biophys Acta 2012; 1823(1):150-8; PMID:21963882; http://dx.doi.org/10.1016/j.bbamcr.2011.09.005
  • Titorenko VI, Chan H, Rachubinski RA. Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J Cell Biol 2000; 148(1):29-44; PMID:10629216; http://dx.doi.org/10.1083/jcb.148.1.29
  • Titorenko VI, Rachubinski RA. Peroxisomal membrane fusion requires two AAA family ATPases, Pex1p and Pex6p. J Cell Biol 2000; 150(4):881-6; PMID:10953011; http://dx.doi.org/10.1083/jcb.150.4.881
  • van der Zand A, Gent J, Braakman I, Tabak HF. Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell 2012; 149(2):397-409; PMID:22500805; http://dx.doi.org/10.1016/j.cell.2012.01.054
  • Knoops K, de Boer R, Kram A, van der Klei IJ. Yeast pex1 cells contain peroxisomal ghosts that import matrix proteins upon reintroduction of Pex1. J Cell Biol 2015; 211(5):955-62; PMID:26644511; http://dx.doi.org/10.1083/jcb.201506059
  • Motley AM, Galvin PC, Ekal L, Nuttall JM, Hettema EH. Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis. J Cell Biol 2015; 211(5):1041-56; PMID:26644516; http://dx.doi.org/10.1083/jcb.201412066
  • Tan D, Blok NB, Rapoport TA, Walz T. Structures of the double-ring AAA ATPase Pex1-Pex6 involved in peroxisome biogenesis. FEBS J 2016; 283(6):986-92; PMID:26476099; http://dx.doi.org/10.1111/febs.13569
  • Nuttall JM, Motley AM, Hettema EH. Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae. Autophagy 2014; 10(5):835-45; PMID:24657987; http://dx.doi.org/10.4161/auto.28259
  • Nazarko TY, Farré JC. Molecular machines involved in pexophagy. In: Brocard C, Hartig A, editors. Molecular machines involved in peroxisome biogenesis and maintenance. Springer-Verlag Wien; 2014. p. 481-506.
  • Law KB, Bronte-Tinkew D, Di Pietro E, Snowden A, Jones RO, Moser A, Brumell JH, Braverman N, Kim PK. The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders. Autophagy 2017; 13(5); http://dx.doi.org/10.1080/15548627.2017.1291470
  • Nordgren M, Francisco T, Lismont C, Hennebel L, Brees C, Wang B, Van Veldhoven PP, Azevedo JE, Fransen M. Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. Autophagy 2015; 11(8):1326-40; PMID:26086376; http://dx.doi.org/10.1080/15548627.2015.1061846
  • Zhang J, Tripathi DN, Jing J, Alexander A, Kim J, Powell RT, Dere R, Tait-Mulder J, Lee JH, Paull TT, et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol 2015; 17(10):1259-69; PMID:26344566; http://dx.doi.org/10.1038/ncb3230
  • Khaminets A, Behl C, Dikic I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol 2016; 26(1):6-16; PMID:26437584; http://dx.doi.org/10.1016/j.tcb.2015.08.010
  • Xie Q, Tzfadia O, Levy M, Weithorn E, Peled-Zehavi H, Van Parys T, Van de Peer Y, Galili G. hfAIM: A reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms. Autophagy 2016; 12(5):876-87; PMID:27071037; http://dx.doi.org/10.1080/15548627.2016.1147668
  • Klouwer FC, Berendse K, Ferdinandusse S, Wanders RJ, Engelen M, Poll-The BT. Zellweger spectrum disorders: clinical overview and management approach. Orphanet J Rare Dis 2015; 10:151; PMID:26627182; http://dx.doi.org/10.1186/s13023-015-0368-9
  • Braverman NE, Raymond GV, Rizzo WB, Moser AB, Wilkinson ME, Stone EM, Steinberg SJ, Wangler MF, Rush ET, Hacia JG, et al. Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol Genet Metab 2016; 117(3):313-21; PMID:26750748; http://dx.doi.org/10.1016/j.ymgme.2015.12.009
  • Wei H, Kemp S, McGuinness MC, Moser AB, Smith KD. Pharmacological induction of peroxisomes in peroxisome biogenesis disorders. Ann Neurol 2000; 47(3):286-96; PMID:10716247; http://dx.doi.org/10.1002/1531-8249(200003)47:3%3c286::AID-ANA3%3e3.0.CO;2-B
  • Zhang R, Chen L, Jiralerspong S, Snowden A, Steinberg S, Braverman N. Recovery of PEX1-Gly843Asp peroxisome dysfunction by small-molecule compounds. Proc Natl Acad Sci U S A 2010; 107(12):5569-74; PMID:20212125; http://dx.doi.org/10.1073/pnas.0914960107
  • Berendse K, Ebberink MS, Ijlst L, Poll-The BT, Wanders RJ, Waterham HR. Arginine improves peroxisome functioning in cells from patients with a mild peroxisome biogenesis disorder. Orphanet J Rare Dis 2013; 8:138; PMID:24016303; http://dx.doi.org/10.1186/1750-1172-8-138
  • Kim DS, Li B, Rhew KY, Oh HW, Lim HD, Lee W, Chae HJ, Kim HR. The regulatory mechanism of 4-phenylbutyric acid against ER stress-induced autophagy in human gingival fibroblasts. Arch Pharm Res 2012; 35(7):1269-78; PMID:22864750; http://dx.doi.org/10.1007/s12272-012-0718-2
  • Xia X, Che Y, Gao Y, Zhao S, Ao C, Yang H, Liu J, Liu G, Han W, Wang Y, et al. Arginine Supplementation Recovered the IFN-γ-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2α Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells. Mol Cells 2016; 39(5):410-7; PMID:27025389; http://dx.doi.org/10.14348/molcells.2016.2358
  • Manjithaya R, Jain S, Farré JC, Subramani S. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J Cell Biol 2010; 189(2):303-10; PMID:20385774; http://dx.doi.org/10.1083/jcb.200909154
  • Chen JL, Lin HH, Kim KJ, Lin A, Forman HJ, Ann DK. Novel roles for protein kinase Cdelta-dependent signaling pathways in acute hypoxic stress-induced autophagy. J Biol Chem 2008; 283(49):34432-44; PMID:18836180; http://dx.doi.org/10.1074/jbc.M804239200
  • Walter KM, Schönenberger MJ, Trötzmüller M, Horn M, Elsässer HP, Moser AB, Lucas MS, Schwarz T, Gerber PA, Faust PL, et al. Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy. Cell Metab 2014; 20(5):882-97; PMID:25440060; http://dx.doi.org/10.1016/j.cmet.2014.09.017
  • Hiebler S, Masuda T, Hacia JG, Moser AB, Faust PL, Liu A, Chowdhury N, Huang N, Lauer A, Bennett J, et al. The Pex1-G844D mouse: a model for mild human Zellweger spectrum disorder. Mol Genet Metab 2014; 111(4):522-32; PMID:24503136; http://dx.doi.org/10.1016/j.ymgme.2014.01.008