2,177
Views
12
CrossRef citations to date
0
Altmetric
Research Paper - Basic Science

Heparan sulfate proteoglycans regulate autophagy in Drosophila

, , , , &
Pages 1262-1279 | Received 22 Jun 2015, Accepted 06 Mar 2017, Published online: 11 Jul 2017

References

  • Lin X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development 2004; 131:6009-21; PMID:15563523; https://doi.org/10.1242/dev.01522
  • Lander AD, Selleck SB. The elusive functions of proteoglycans: in vivo veritas. J Cell Biol 2000; 148:227-32; PMID:10648554; https://doi.org/10.1083/jcb.148.2.227
  • Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007; 446:1030-7; PMID:17460664; https://doi.org/10.1038/nature05817
  • Hacker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 2005; 6:530-41; PMID:16072037; https://doi.org/10.1038/nrm1681
  • Kirkpatrick CA, Selleck SB. Heparan sulfate proteoglycans at a glance. J Cell Sci 2007; 120:1829-32; PMID:17515480; https://doi.org/10.1242/jcs.03432
  • Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 2011; 3:a004952; PMID:21690215; https://doi.org/10.1101/cshperspect.a004952
  • Selleck SB. Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet 2000; 16:206-12; PMID:10782114; https://doi.org/10.1016/S0168-9525(00)01997-1
  • Johnson KG, Tenney AP, Ghose A, Duckworth AM, Higashi ME, Parfitt K, Marcu O, Heslip TR, Marsh JL, Schwarz TL, et al. The HSPGs syndecan and dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 2006; 49:517-31; PMID:16476662; https://doi.org/10.1016/j.neuron.2006.01.026
  • Stryker E, Johnson KG. LAR, liprin alpha and the regulation of active zone morphogenesis. J Cell Sci 2007; 120:3723-8; PMID:17959628; https://doi.org/10.1242/jcs.03491
  • Kamimura K, Ueno K, Nakagawa J, Hamada R, Saitoe M, Maeda N. Perlecan regulates bidirectional Wnt signaling at the Drosophila neuromuscular junction. J Cell Biol 2013; 200:219-33; PMID:23319599; https://doi.org/10.1083/jcb.201207036
  • Ren Y, Kirkpatrick CA, Rawson JM, Sun M, Selleck SB. Cell type-specific requirements for heparan sulfate biosynthesis at the drosophila neuromuscular junction: Effects on synapse function, membrane trafficking, and mitochondrial localization. J Neurosci 2009; 29:8539-50; PMID:19571145; https://doi.org/10.1523/JNEUROSCI.5587-08.2009
  • Bellaiche Y, The I, Perrimon N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 1998; 394:85-8; PMID:9665133; https://doi.org/10.1038/27932
  • Duffy JB. GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 2002; 34:1-15; PMID:12324939; https://doi.org/10.1002/gene.10150
  • Han C, Belenkaya TY, Khodoun M, Tauchi M, Lin X, Lin X. Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 2004; 131:1563-75; PMID:14998928; https://doi.org/10.1242/dev.01051
  • Lin H, Huber R, Schlessinger D, Morin PJ. Frequent silencing of the GPC3 gene in ovarian cancer cell lines. Cancer Res 1999; 59:807-10; PMID:10029067
  • Toyoda H, Kinoshita-Toyoda A, Fox B, Selleck SB. Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. J Biol Chem 2000; 275:21856-61; PMID:10806213; https://doi.org/10.1074/jbc.M003540200
  • Toyoda H, Kinoshita-Toyoda A, Selleck SB. Structural analysis of glycosaminoglycans in Drosophila and Caenorhabditis elegans and demonstration that tout-velu, a Drosophila gene related to EXT tumor suppressors, affects heparan sulfate in vivo. J Biol Chem 2000; 275:2269-75; PMID:10644674; https://doi.org/10.1074/jbc.275.4.2269
  • Schmid A, Chiba A, Doe CQ. Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 1999; 126:4653-89; PMID:10518486
  • Atwood HL, Govind CK, Wu CF. Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. J Neurobiol 1993; 24:1008-24; PMID:8409966; https://doi.org/10.1002/neu.480240803
  • Gorczyca M, Popova E, Jia XX, Budnik V. The gene mod(mdg4) affects synapse specificity and structure in Drosophila. J Neurobiol 1999; 39:447-60; PMID:10363916; https://doi.org/10.1002/(SICI)1097-4695(19990605)39:3%3c447::AID-NEU10%3e3.0.CO;2-Q
  • Teodoro RO, Pekkurnaz G, Nasser A, Higashi-Kovtun ME, Balakireva M, McLachlan IG, Camonis J, Schwarz TL. Ral mediates activity-dependent growth of postsynaptic membranes via recruitment of the exocyst. EMBO J 2013; 32:2039-55; PMID:23812009; https://doi.org/10.1038/emboj.2013.147
  • Gorczyca D, Ashley J, Speese S, Gherbesi N, Thomas U, Gundelfinger E, Gramates LS, Budnik V. Postsynaptic membrane addition depends on the Discs-Large-interacting t-SNARE Gtaxin. J Neurosci 2007; 27:1033-44; PMID:17267557; https://doi.org/10.1523/JNEUROSCI.3160-06.2007
  • Lee HG, Zhao N, Campion BK, Nguyen MM, Selleck SB. Akt regulates glutamate receptor trafficking and postsynaptic membrane elaboration at the Drosophila neuromuscular junction. Dev Neurobiol 2013; 73:723-43; PMID:23592328; https://doi.org/10.1002/dneu.22086
  • Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010; 141:656-67; PMID:20478256; https://doi.org/10.1016/j.cell.2010.04.009
  • Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 2007; 8:931-7; PMID:17712358; https://doi.org/10.1038/nrm2245
  • Pircs K, Nagy P, Varga A, Venkei Z, Erdi B, Hegedus K, Juhasz G. Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila. PLoS One 2012; 7:e44214; PMID:22952930; https://doi.org/10.1371/journal.pone.0044214
  • DeVorkin L, Go NE, Hou YC, Moradian A, Morin GB, Gorski SM. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB. J Cell Biol 2014; 205:477-92; PMID:24862573; https://doi.org/10.1083/jcb.201303144
  • Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 2008; 4:176-84; PMID:18059160; https://doi.org/10.4161/auto.5269
  • Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cumming RC, Harris GL, Nezis IP, Schubert DR, Simonsen A, et al. p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy 2011; 7:572-83; PMID:21325881; https://doi.org/10.4161/auto.7.6.14943
  • Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000; 275:992-8; PMID:10625637; https://doi.org/10.1074/jbc.275.2.992
  • Zhai C, Cheng J, Mujahid H, Wang H, Kong J, Yin Y, Li J, Zhang Y, Ji X, Chen W. Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque. PLoS One 2014; 9:e90563; PMID:24599185; https://doi.org/10.1371/journal.pone.0090563
  • Nagy P, Varga A, Kovacs AL, Takats S, Juhasz G. How and why to study autophagy in Drosophila: it's more than just a garbage chute. Methods 2015; 75:151-61; PMID:25481477; https://doi.org/10.1016/j.ymeth.2014.11.016
  • Nezis IP, Shravage BV, Sagona AP, Lamark T, Bjorkoy G, Johansen T, Rusten TE, Brech A, Baehrecke EH, Stenmark H. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J Cell Biol 2010; 190:523-31; PMID:20713604; https://doi.org/10.1083/jcb.201002035
  • Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007; 3:452-60; PMID:17534139; https://doi.org/10.4161/auto.4451
  • Kneen M, Farinas J, Li Y, Verkman AS. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 1998; 74:1591-9; PMID:9512054; https://doi.org/10.1016/S0006-3495(98)77870-1
  • Nagy P, Varga A, Pircs K, Hegedus K, Juhasz G. Myc-driven overgrowth requires unfolded protein response-mediated induction of autophagy and antioxidant responses in Drosophila melanogaster. PLoS Genet 2013; 9:e1003664; PMID:23950728; https://doi.org/10.1371/journal.pgen.1003664
  • Mauvezin C, Ayala C, Braden CR, Kim J, Neufeld TP. Assays to monitor autophagy in Drosophila. Methods 2014; 68:134-9; PMID:24667416; https://doi.org/10.1016/j.ymeth.2014.03.014
  • Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016; 12:1-222; PMID:26799652; https://doi.org/10.1080/15548627.2015.1100356
  • Gasque G, Conway S, Huang J, Rao Y, Vosshall LB. Small molecule drug screening in Drosophila identifies the 5HT2A receptor as a feeding modulation target. Sci Rep 2013; 3:srep02120; PMID:23817146; https://doi.org/10.1038/srep02120
  • Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006; 26:9220-31; PMID:17030611; https://doi.org/10.1128/MCB.01453-06
  • Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic reticulum stress triggers autophagy. J Biol Chem 2006; 281:30299-304; PMID:16901900; https://doi.org/10.1074/jbc.M607007200
  • Ruegsegger U, Leber JH, Walter P. Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 2001; 107:103-14; PMID:11595189; https://doi.org/10.1016/S0092-8674(01)00505-0
  • Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, Yoshida H, Morimoto R, Kurnit DM, Mori K, et al. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 2001; 107:893-903; PMID:11779465; https://doi.org/10.1016/S0092-8674(01)00612-2
  • Yoshida H, Oku M, Suzuki M, Mori K. pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J Cell Biol 2006; 172:565-75; PMID:16461360; https://doi.org/10.1083/jcb.200508145
  • Ryoo HD, Domingos PM, Kang MJ, Steller H. Unfolded protein response in a Drosophila model for retinal degeneration. EMBO J 2007; 26:242-52; PMID:17170705; https://doi.org/10.1038/sj.emboj.7601477
  • O'Tousa JE, Baehr W, Martin RL, Hirsh J, Pak WL, Applebury ML. The Drosophila ninaE gene encodes an opsin. Cell 1985; 40:839-50; PMID:2985266; https://doi.org/10.1016/0092-8674(85)90343-5
  • Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011; 7:279-96; PMID:21189453; https://doi.org/10.4161/auto.7.3.14487
  • Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011; 12:9-14; PMID:21179058; https://doi.org/10.1038/nrm3028
  • Scott RC, Schuldiner O, Neufeld TP. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 2004; 7:167-78; PMID:15296714; https://doi.org/10.1016/j.devcel.2004.07.009
  • Baeg GH, Lin X, Khare N, Baumgartner S, Perrimon N. Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 2001; 128:87-94; PMID:11092814
  • Lin X, Buff EM, Perrimon N, Michelson AM. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 1999; 126:3715-23; PMID:10433902
  • Lin X, Perrimon N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 1999; 400:281-4; PMID:10421372; https://doi.org/10.1038/22343
  • Perrimon N, Lanjuin A, Arnold C, Noll E. Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II. Loci on the second and third chromosomes identified by P-element-induced mutations. Genetics 1996; 144:1681-92; PMID:8978055
  • Takats S, Nagy P, Varga A, Pircs K, Karpati M, Varga K, Kovács AL, Hegedűs K, Juhász G. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J Cell Biol 2013; 201:531-9; PMID:23671310; https://doi.org/10.1083/jcb.201211160
  • Sahani MH, Itakura E, Mizushima N. Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 2014; 10:431-41; PMID:24394643; https://doi.org/10.4161/auto.27344
  • Jakobsson L, Kreuger J, Holmborn K, Lundin L, Eriksson I, Kjellen L, Claesson-Welsh L. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev Cell 2006; 10:625-34; PMID:16678777; https://doi.org/10.1016/j.devcel.2006.03.009
  • Ding Z, Wang X, Khaidakov M, Liu S, Dai Y, Mehta JL. Degradation of heparan sulfate proteoglycans enhances oxidized-LDL-mediated autophagy and apoptosis in human endothelial cells. Biochem Biophys Res Commun 2012; 426:106-11; PMID:22910414; https://doi.org/10.1016/j.bbrc.2012.08.044
  • Shteingauz A, Boyango I, Naroditsky I, Hammond E, Gruber M, Doweck I, Ilan N, Vlodavsky I. Heparanase enhances Tumor growth and Chemoresistance by promoting autophagy. Cancer Res 2015; 75:3946-57; PMID:26249176; https://doi.org/10.1158/0008-5472.CAN-15-0037
  • Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 2003; 113:445-56; PMID:12757706; https://doi.org/10.1016/S0092-8674(03)00348-9
  • Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell 2003; 113:435-44; PMID:12757705; https://doi.org/10.1016/S0092-8674(03)00347-7
  • Settembre C, Arteaga-Solis E, McKee MD, de Pablo R, Al Awqati Q, Ballabio A, Karsenty G. Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification. Genes Dev 2008; 22:2645-50; https://doi.org/10.1101/gad.1711308
  • Settembre C, Fraldi A, Jahreiss L, Spampanato C, Venturi C, Medina D, de Pablo R, Tacchetti C, Rubinsztein DC, Ballabio A. A block of autophagy in lysosomal storage disorders. Hum Mol Genet 2008; 17:119-29; PMID:17913701; https://doi.org/10.1093/hmg/ddm289
  • Settembre C, Fraldi A, Rubinsztein DC, Ballabio A. Lysosomal storage diseases as disorders of autophagy. Autophagy 2008; 4:113-4; PMID:18000397; https://doi.org/10.4161/auto.5227
  • Settembre C, Arteaga-Solis E, Ballabio A, Karsenty G. Self-eating in skeletal development: implications for lysosomal storage disorders. Autophagy 2009; 5:228-9; PMID:19029806; https://doi.org/10.4161/auto.5.2.7390
  • Annunziata I, Bouche V, Lombardi A, Settembre C, Ballabio A. Multiple sulfatase deficiency is due to hypomorphic mutations of the SUMF1 gene. Hum Mutat 2007; 28:928; PMID:17657823; https://doi.org/10.1002/humu.9504
  • Abid MR, Guo S, Minami T, Spokes KC, Ueki K, Skurk C, Walsh K, Aird WC. Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells. Arterioscler Thromb Vasc Biol 2004; 24:294-300; PMID:14656735; https://doi.org/10.1161/01.ATV.0000110502.10593.06
  • Dey JH, Bianchi F, Voshol J, Bonenfant D, Oakeley EJ, Hynes NE. Targeting fibroblast growth factor receptors blocks PI3K/AKT signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis. Cancer Res 2010; 70:4151-62; PMID:20460524; https://doi.org/10.1158/0008-5472.CAN-09-4479
  • Berry DL, Baehrecke EH. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 2007; 131:1137-48; PMID:18083103; https://doi.org/10.1016/j.cell.2007.10.048
  • Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, Brech A, Stenmark H. Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 2004; 7:179-92; PMID:15296715; https://doi.org/10.1016/j.devcel.2004.07.005
  • Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E, Castagna C, Yamamoto A, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 2014; 83:1131-43; PMID:25155956; https://doi.org/10.1016/j.neuron.2014.07.040
  • Shen W, Ganetzky B. Autophagy promotes synapse development in Drosophila. J Cell Biol 2009; 187:71-9; PMID:19786572; https://doi.org/10.1083/jcb.200907109
  • Rowland AM, Richmond JE, Olsen JG, Hall DH, Bamber BA. Presynaptic terminals independently regulate synaptic clustering and autophagy of GABAA receptors in Caenorhabditis elegans. J Neurosci 2006; 26:1711-20; https://doi.org/10.1523/JNEUROSCI.2279-05.2006
  • Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 2007; 448:151-6; PMID:17625558; https://doi.org/10.1038/nature05954
  • Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, Yang-Zhou D, Flockhart I, Binari R, Shim HS, et al. The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. Genetics 2015; 201:843-52; PMID:26320097; https://doi.org/10.1534/genetics.115.180208
  • Juhasz G, Hill JH, Yan Y, Sass M, Baehrecke EH, Backer JM, Neufeld TP. The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol 2008; 181:655-66; PMID:18474623; https://doi.org/10.1083/jcb.200712051
  • Chang YY, Neufeld TP. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol Biol Cell 2009; 20:2004-14; PMID:19225150; https://doi.org/10.1091/mbc.E08-12-1250
  • Emery P. Protein extraction from Drosophila heads. Methods Mol Biol 2007; 362:375-7; PMID:17417024
  • Cumming RC, Simonsen A, Finley KD. Quantitative analysis of autophagic activity in Drosophila neural tissues by measuring the turnover rates of pathway substrates. Methods Enzymol 2008; 451:639-51; PMID:19185743
  • Batteiger B, Newhall WJt, Jones RB. The use of Tween 20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes. J Immunol Methods 1982; 55:297-307; PMID:6820029; https://doi.org/10.1016/0022-1759(82)90089-8