3,037
Views
22
CrossRef citations to date
0
Altmetric
Research Paper - Basic Science

Antimycobacterial effect of IFNG (interferon gamma)-induced autophagy depends on HMOX1 (heme oxygenase 1)-mediated increase in intracellular calcium levels and modulation of PPP3/calcineurin-TFEB (transcription factor EB) axis

, , , , , & ORCID Icon show all
Pages 972-991 | Received 16 Dec 2016, Accepted 22 Jan 2018, Published online: 10 May 2018

References

  • Stark GR, Kerr IM, Williams BR, et al. How cells respond to interferons [Review]. Annu Rev Biochem. 1998;67:227–264. doi: 10.1146/annurev.biochem.67.1.227. PubMed PMID: 9759489; eng.
  • Schroder K, Hertzog PJ, Ravasi T, et al. Interferon-gamma: an overview of signals, mechanisms and functions [Review]. J Leukoc Biol. 2004;75(2):163–189. doi: 10.1189/jlb.0603252. PubMed PMID: 14525967; eng.
  • Flesch I, Kaufmann SH. Mycobacterial growth inhibition by interferon-gamma-activated bone marrow macrophages and differential susceptibility among strains of Mycobacterium tuberculosis [Comparative Study Research Support, Non-U.S. Gov't]. J Immunol. 1987;138(12):4408—4413. PubMed PMID: 3108389; eng.
  • Flynn JL, Chan J, Triebold KJ, et al. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med. 1993;178(6):2249–2254. PubMed PMID: 7504064; PubMed Central PMCID: PMC2191274. eng.
  • Gutierrez MG, Master SS, Singh SB, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–766. doi: S0092867404011067 [pii] 10.1016/j.cell.2004.11.038. PubMed PMID: 15607973; eng.
  • Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717–1721. doi: 9015 [pii]. PubMed PMID: 11099404; PubMed Central PMCID: PMC2732363. eng. doi:10.1126/science.290.5497.1717.
  • Deretic V, Levine B. Autophagy, immunity, and microbial adaptations [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Cell Host Microbe. 2009;5(6):527–549. doi:10.1016/j.chom.2009.05.016. PubMed PMID: 19527881; PubMed Central PMCID: PMC2720763. eng.
  • Paludan C, Schmid D, Landthaler M, et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy [Research Support, Non-U.S. Gov't]. Science. 2005;307(5709):593–596. doi:10.1126/science.1104904. PubMed PMID: 15591165; eng
  • MacMicking JD, Taylor GA, McKinney JD. Immune control of tuberculosis by IFN-gamma-inducible LRG-47 [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Science. 2003;302(5645):654–659. doi: 10.1126/science.1088063. PubMed PMID: 14576437; eng.
  • Singh SB, Davis AS, Taylor GA, et al Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science. 2006;313(5792):1438–1441. doi: 1129577 [pii] 10.1126/science.1129577. PubMed PMID: 16888103; eng.
  • Singh SB, Ornatowski W, Vergne I, et al. Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Nat Cell Biol. 2010;12(12):1154–1165. doi: 10.1038/ncb2119. PubMed PMID: 21102437; PubMed Central PMCID: PMC2996476. eng.
  • Chauhan S, Mandell MA, Deretic V. IRGM governs the core autophagy machinery to conduct antimicrobial defense [Research Support, N.I.H., Extramural]. Mol Cell. 2015;58(3):507–521. doi: 10.1016/j.molcel.2015.03.020. PubMed PMID: 25891078; PubMed Central PMCID: PMC4427528. eng.
  • Intemann CD, Thye T, Niemann S, et al. Autophagy gene variant IRGM -261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains [Research Support, Non-U.S. Gov't]. PLoS Pathog. 2009;5(9):e1000577. doi: 10.1371/journal.ppat.1000577. PubMed PMID: 19750224; PubMed Central PMCID: PMC2735778. eng.
  • Yang D, Chen J, Shi C, et al. Autophagy gene polymorphism is associated with susceptibility to leprosy by affecting inflammatory cytokines [Research Support, Non-U.S. Gov't]. Inflammation. 2014;37(2):593–598. doi: 10.1007/s10753-013-9773-1. PubMed PMID: 24264476; eng.
  • Rovetta AI, Pena D, Hernandez Del Pino RE, et al. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis [Research Support, Non-U.S. Gov't]. Autophagy. 2014;10(12):2109–2121. doi: 10.4161/15548627.2014.981791. PubMed PMID: 25426782; PubMed Central PMCID: PMC4502660. eng.
  • Matsuzawa T, Kim BH, Shenoy AR, et al. IFN-gamma elicits macrophage autophagy via the p38 MAPK signaling pathway [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. J Immunol. 2012;189(2):813–818. doi: 10.4049/jimmunol.1102041. PubMed PMID: 22675202; PubMed Central PMCID: PMC3392356. eng.
  • Matsuzawa T, Fujiwara E, Washi Y. Autophagy activation by interferon-gamma via the p38 mitogen-activated protein kinase signaling pathway is involved in macrophage bactericidal activity [Research Support, Non-U.S. Gov't]. Immunology. 2014;141(1):61–69. doi: 10.1111/imm.12168. PubMed PMID: 24032631; PubMed Central PMCID: PMC3893850. eng.
  • Xia XJ, Gao YY, Zhang J, et al. Autophagy mediated by arginine depletion activation of the nutrient sensor GCN2 contributes to interferon-γ-induced malignant transformation of primary bovine mammary epithelial cells [Article]. Cell Death Discovery. 2016;2:15065. doi: 10.1038/cddiscovery.2015.65. PubMed PMID: 27551491; PubMed Central PMCID: PMC4979444. eng.
  • Li P, Du Q, Cao Z, et al. Interferon-gamma induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF-1) [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Lett. 2012;314(2):213–222. doi: 10.1016/j.canlet.2011.09.031. PubMed PMID: 22056812; PubMed Central PMCID: PMC3487386. eng.
  • Gade P, Ramachandran G, Maachani UB, et al. An IFN-gamma-stimulated ATF6-C/EBP-beta-signaling pathway critical for the expression of Death Associated Protein Kinase 1 and induction of autophagy [Research Support, N.I.H., Extramural]. Proc Natl Acad Sci U S A.2012;109(26):10316–1-321. doi: 10.1073/pnas.1119273109. PubMed PMID: 22699507; PubMed Central PMCID: PMC3387052. eng.
  • Sardiello M, Palmieri M, di Ronza A, et al. A gene network regulating lysosomal biogenesis and function [Research Support, Non-U.S. Gov't]. Science. 2009;325(5939):473–477. doi: 10.1126/science.1174447. PubMed PMID: 19556463; eng.
  • Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, et al. TFEB links autophagy to lysosomal biogenesis [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't ]. Science. 2011;332(6036):1429–1433. doi: 10.1126/science.1204592. PubMed PMID: 21617040; PubMed Central PMCID: PMC3638014. eng.
  • Martina JA, Chen Y, Gucek M, et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB [Research Support, N.I.H., Intramural]. Autophagy. 2012;8(6):903–914. doi: 10.4161/auto.19653. PubMed PMID: 22576015; PubMed Central PMCID: PMC3427256. eng.
  • Pena-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC, et al. Regulation of TFEB and V-ATPases by mTORC1 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Embo J. 2011;30(16):3242–3258. doi: 10.1038/emboj.2011.257. PubMed PMID: 21804531; PubMed Central PMCID: PMC3160667. eng.
  • Roczniak-Ferguson A, Petit CS, Froehlich F, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Sci Signal. 2012;5(228):ra42. doi: 10.1126/scisignal.2002790. PubMed PMID: 22692423; PubMed Central PMCID: PMC3437338. eng.
  • Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signaling mechanism senses and regulates the lysosome via mTOR and TFEB [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Embo J. 2012;31(5):1095–1108. doi: 10.1038/emboj.2012.32. PubMed PMID: 22343943; PubMed Central PMCID: PMC3298007. eng.
  • Medina DL, Di Paola S, Peluso I, et al. Lysosomal calcium signaling regulates autophagy through calcineurin and TFEB [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Nat Cell Biol. 2015;17(3):288–299. doi: 10.1038/ncb3114. PubMed PMID: 25720963; PubMed Central PMCID: PMC4801004. eng.
  • Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A. 1968;61(2):748–755. PubMed PMID: 4386763; eng. doi:10.1073/pnas.61.2.748.
  • Otterbein LE, Choi AM. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1029–L1037. PubMed PMID: 11076792; eng. doi:10.1152/ajplung.2000.279.6.L1029.
  • Bolisetty S, Traylor AM, Kim J, et al. Heme oxygenase-1 inhibits renal tubular macroautophagy in acute kidney injury. J Am Soc Nephrol. 2010;21(10):1702–1712. doi: ASN.2010030238 [pii] 10.1681/ASN.2010030238. PubMed PMID: 20705711; eng.
  • Carchman EH, Rao J, Loughran PA, et al. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology. 2011;53(6):2053–62. doi: 10.1002/hep.24324. PubMed PMID: 21437926; eng.
  • Waltz P, Carchman EH, Young AC, et al. Lipopolysaccaride induces autophagic signaling in macrophages via a TLR4, heme oxygenase-1 dependent pathway [Research Support, U.S. Gov't, Non-P.H.S.]. Autophagy. 2011;7(3):315–320. doi: 14044 [pii] 10.4161/auto.7.3.14044. PubMed PMID: 21307647; eng.
  • Kumar A, Deshane JS, Crossman DK, et al. Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem. 2008;283(26):18032–18039. doi: M802274200 [pii] 10.1074/jbc.M802274200. PubMed PMID: 18400743; PubMed Central PMCID: PMC2440631. eng.
  • Kumar A, Toledo JC, Patel RP, et al. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad Sci U S A. 2007;104(28):11568–11573. doi: 0705054104 [pii] 10.1073/pnas.0705054104. PubMed PMID: 17609369; eng.
  • Regev D, Surolia R, Karki S, et al. Heme oxygenase-1 promotes granuloma development and protects against dissemination of mycobacteria [Research Support, N.I.H., Extramural]. Lab Invest. 2012;92(11):1541–1552. doi: 10.1038/labinvest.2012.125. PubMed PMID: 22964851; PubMed Central PMCID: PMC4017357. eng.
  • Silva-Gomes S, Appelberg R, Larsen R, et al. Heme catabolism by heme oxygenase-1 confers host resistance to Mycobacterium infection [Research Support, Non-U.S. Gov't]. Infect Immun. 2013;81(7):2536–2545. doi: 10.1128/IAI.00251-13. PubMed PMID: 23630967; PubMed Central PMCID: PMC3697604. eng.
  • Surolia R, Karki S, Wang Z, et al. Attenuated heme oxygenase-1 responses predispose the elderly to pulmonary nontuberculous mycobacterial infections. Am J PhysiolLung Cell Mol Physiol. 2016;311(5):L928–L940. doi: 10.1152/ajplung.00397.2015. PubMed PMID: 27694475; PubMed Central PMCID: PMC5504405. eng.
  • Malaguarnera L, Imbesi R, Di Rosa M, Scuto A, Castrogiovanni P, Messina A, Sanfilippo S. Action of prolactin, IFN-gamma, TNF-alpha and LPS on heme oxygenase-1 expression and VEGF release in human monocytes/macrophages [Research Support, Non-U.S. Gov't]. Int Immunopharmacol. 2005;5(9):1458–1469. doi: 10.1016/j.intimp.2005.04.002. PubMed PMID: 15953572; eng.
  • Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 [Research Support, Non-U.S. Gov't]. Autophagy. 2007;3(5):452–460. PubMed PMID: 17534139; eng.
  • Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol. 1995 Jan;66(1):3–14. PubMed PMID: 7750517; eng.
  • Xu Y, Jagannath C, Liu XD, et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Immunity. 2007;27(1):135–144. doi: 10.1016/j.immuni.2007.05.022. PubMed PMID: 17658277; PubMed Central PMCID: PMC2680670. eng.
  • Ehrt S, Schnappinger D. Mycobacterial survival strategies in the phagosome: defence against host stresses [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Cell Microbiol. 2009;11(8):1170–1178. doi: 10.1111/j.1462-5822.2009.01335.x. PubMed PMID: 19438516; PubMed Central PMCID: PMC3170014. eng.
  • Rohde KH, Abramovitch RB, Russell DG. Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues [Research Support, N.I.H., Extramural]. Cell Host Microbe. 2007 Nov 15;2(5):352–364. doi: 10.1016/j.chom.2007.09.006. PubMed PMID: 18005756; eng.
  • Dey B, Dey RJ, Cheung LS, et al. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Nat Med. 2015;21(4):401–406. doi: 10.1038/nm.3813. PubMed PMID: 25730264; PubMed Central PMCID: PMC4390473. Eng.
  • Shiloh MU, Manzanillo P, Cox JS. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cell Host Microbe. 2008;;3(5):323–30. doi: 10.1016/j.chom.2008.03.007. PubMed PMID: 18474359; PubMed Central PMCID: PMC2873178. eng.
  • Regev D, Surolia R, Karki S, et al. Heme oxygenase-1 promotes granuloma development and protects against dissemination of mycobacteria [Research Support, N.I.H., Extramural]. Laboratory Investigation; A Journal Of Technical Methods And Pathology. 2012;92(11):1541–1552. doi: 10.1038/labinvest.2012.125. PubMed PMID: 22964851; PubMed Central PMCID: PMC4017357. eng.
  • Castillo EF, Dekonenko A, Arko-Mensah J, et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation [Research Support, N.I.H., Extramural]. Proc Natl Acad Sci U S A. 2012;109(46):E3168–E3176. doi: 10.1073/pnas.1210500109. PubMed PMID: 23093667; PubMed Central PMCID: PMC3503152. eng.
  • Schottelius AJ, Mayo MW, Sartor RB, et al. Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA binding [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. J Biol Chem. 1999;274(45):31868–31874. PubMed PMID: 10542212; eng. doi:10.1074/jbc.274.45.31868.
  • Stenvinkel P, Ketteler M, Johnson RJ, et al. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia–the good, the bad, and the ugly [Review]. Kidney Int. 2005;67(4):1216–1233. doi: 10.1111/j.1523-1755.2005.00200.x. PubMed PMID: 15780075; eng.
  • Decuypere JP, Bultynck G, Parys JB. A dual role for Ca(2+) in autophagy regulation [Research Support, Non-U.S. Gov't Review]. Cell Calcium. 2011;50(3):242–250. doi: 10.1016/j.ceca.2011.04.001. PubMed PMID: 21571367; eng.
  • Medina DL, Ballabio A. Lysosomal calcium regulates autophagy [Review]. Autophagy. 2015;11(6):970–971. doi: 10.1080/15548627.2015.1047130. PubMed PMID: 26000950; PubMed Central PMCID: PMC4502748. eng.
  • Kung AW, Lau KS, Wong NS. Interferon-gamma increases intracellular calcium and inositol phosphates in primary human thyroid cell culture [Research Support, Non-U.S. Gov't]. Endocrinology. 1995;136(11):5028–5033. doi: 10.1210/endo.136.11.7588238. PubMed PMID: 7588238; eng.
  • Clapham DE. Calcium signaling [Review]. Cell. 2007;131(6):1047–1058. doi: 10.1016/j.cell.2007.11.028. PubMed PMID: 18083096; eng.
  • Huang J, Lam GY, Brumell JH. Autophagy signaling through reactive oxygen species [Research Support, Non-U.S. Gov't Review]. Antioxid Redox Signal. 2011;14(11):2215–31. doi: 10.1089/ars.2010.3554. PubMed PMID: 20874258; Eng.
  • Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment [Research Support, Non-U.S. Gov't Review]. Antioxid Redox Signal. 2009;11(4):777–90. doi: 10.1089/ARS.2008.2270. PubMed PMID: 18828708; Eng.
  • Liu J, Farmer JD Jr., Lane WS, et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Cell. 1991;66(4):807–815. PubMed PMID: 1715244; eng. doi:10.1016/0092-8674(91)90124-H.
  • Xie QW, Whisnant R, Nathan C. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med. 1993;177(6):1779–84. PubMed PMID: 7684434; PubMed Central PMCID: PMC2191051. eng. doi:10.1084/jem.177.6.1779.
  • Chen K, Maines MD. Nitric oxide induces heme oxygenase-1 via mitogen-activated protein kinases ERK and p38 [Research Support, U.S. Gov't, P.H.S.]. Cell Mol Biol (Noisy-le-grand). 2000;46(3):609–17. PubMed PMID: 10872747; eng.
  • Takahashi K, Hara E, Suzuki H, et al. Expression of heme oxygenase isozyme mRNAs in the human brain and induction of heme oxygenase-1 by nitric oxide donors [Research Support, Non-U.S. Gov't]. J Neurochem. 1996;67(2):482–9. PubMed PMID: 8764571; eng. doi:10.1046/j.1471-4159.1996.67020482.x.
  • Di Paolo NC, Shafiani S, Day T, et al. Interdependence between Interleukin-1 and tumor necrosis factor regulates TNF-Dependent control of mycobacterium tuberculosis Infection [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Immunity. 2015;43(6):1125–1136. doi: 10.1016/j.immuni.2015.11.016. PubMed PMID: 26682985; PubMed Central PMCID: PMC4685953. eng.
  • Okamoto Yoshida Y, Umemura M, Yahagi A, et al. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung [Research Support, Non-U.S. Gov't]. J Immunol. 2010;184(8):4414–4422. doi: 10.4049/jimmunol.0903332. PubMed PMID: 20212094; eng.
  • Harris J. Autophagy and IL-1 Family Cytokines. Front Immunol. 2013;4:83. doi: 10.3389/fimmu.2013.00083. PubMed PMID: 23577011; PubMed Central PMCID: PMC3617358. eng.
  • Orosz L, Papanicolaou EG, Seprenyi G, et al. IL-17A and IL-17F induce autophagy in RAW 264.7 macrophages [Research Support, Non-U.S. Gov't]. Biomed Pharmacother. 2016;77:129–134. doi: 10.1016/j.biopha.2015.12.020. PubMed PMID: 26796276; eng.
  • Park HJ, Lee SJ, Kim SH, et al. IL-10 inhibits the starvation induced autophagy in macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway [Research Support, Non-U.S. Gov't]. Mol Immunol. 2011;48(4):720–727. doi: 10.1016/j.molimm.2010.10.020. PubMed PMID: 21095008; eng.
  • Gao X, Chen J, Tong Z, et al. Interleukin-10 promoter gene polymorphisms and susceptibility to tuberculosis: a meta-analysis [Meta-Analysis Research Support, Non-U.S. Gov't]. PLoS One. 2015;10(6):e0127496. doi: 10.1371/journal.pone.0127496. PubMed PMID: 26030829; PubMed Central PMCID: PMC4452516. eng.
  • Seixas E, Gozzelino R, Chora A, et al. Heme oxygenase-1 affords protection against noncerebral forms of severe malaria [Research Support, Non-U.S. Gov't]. Proc Natl Acad Sci U S A. 2009;106(37):15837–15842. doi: 10.1073/pnas.0903419106. PubMed PMID: 19706490; PubMed Central PMCID: PMC2728109. eng.
  • Pamplona A, Ferreira A, Balla J, et al. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria [Comparative Study Research Support, Non-U.S. Gov't]. Nat Med. 2007;13(6):703–710. doi: 10.1038/nm1586. PubMed PMID: 17496899; eng.
  • Tsuburai T, Kaneko T, Nagashima Y, et al. Pseudomonas aeruginosa-induced neutrophilic lung inflammation is attenuated by adenovirus-mediated transfer of the heme oxygenase 1 cDNA in mice [Research Support, Non-U.S. Gov't]. Hum Gene Ther. 2004;15(3):273–285. doi: 10.1089/104303404322886129. PubMed PMID: 15018736; eng.
  • Onyiah JC, Sheikh SZ, Maharshak N, et al. Carbon monoxide and heme oxygenase-1 prevent intestinal inflammation in mice by promoting bacterial clearance [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Gastroenterology. 2013;144(4):789–798. doi: 10.1053/j.gastro.2012.12.025. PubMed PMID: 23266559; PubMed Central PMCID: PMC3608700. eng.
  • Chung SW, Liu X, Macias AA, et al. Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice [Research Support, N.I.H., Extramural]. J Clin Invest. 2008;118(1):239–247. doi: 10.1172/JCI32730. PubMed PMID: 18060048; PubMed Central PMCID: PMC2104480. eng.
  • Devadas K, Dhawan S. Hemin activation ameliorates HIV-1 infection via heme oxygenase-1 induction. J Immunol. 2006;176(7):4252–7. PubMed PMID: 16547262; eng.
  • Tseng CK, Lin CK, Wu YH, et al. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci Rep. 2016;6:32176. doi: 10.1038/srep32176. PubMed PMID: 27553177; PubMed Central PMCID: PMC4995454. eng.
  • Gahlot S, Nasreen N, Johnson JA, et al. Heme Oxygenase-1 Deficiency Diminishes Methicillin-Resistant Staphylococcus aureus Clearance Due to Reduced TLR9 Expression in Pleural Mesothelial Cells. PLoS One. 2017;12(1):e0169245. doi: 10.1371/journal.pone.0169245. PubMed PMID: 28052108; PubMed Central PMCID: PMC5215390. eng.
  • Stolt C, Schmidt IH, Sayfart Y, et al. Heme Oxygenase-1 and Carbon Monoxide Promote Burkholderia pseudomallei Infection. J Immunol. 2016;197(3):834–846. doi: 10.4049/jimmunol.1403104. PubMed PMID: 27316684; eng.
  • Abdalla MY, Ahmad IM, Switzer B, et al. Induction of heme oxygenase-1 contributes to survival of Mycobacterium abscessus in human macrophages-like THP-1 cells [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Redox Biol. 2015;4:328–339. doi: 10.1016/j.redox.2015.01.012. PubMed PMID: 25638774; PubMed Central PMCID: PMC4326180. eng.
  • Mitterstiller AM, Haschka D, Dichtl S, et al. Heme oxygenase 1 controls early innate immune response of macrophages to Salmonella Typhimurium infection. Cell Microbiol. 2016;18(10):1374–1389. doi: 10.1111/cmi.12578. PubMed PMID: 26866925; eng.
  • Costa DL, Namasivayam S, Amaral EP, et al. Pharmacological Inhibition of Host Heme Oxygenase-1 Suppresses Mycobacterium tuberculosis Infection In Vivo by a Mechanism Dependent on T Lymphocytes [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, N.I.H., Intramural Research Support, U.S. Gov't, Non-P.H.S.]. MBio. 2016;7(5). doi: 10.1128/mBio.01675-16. PubMed PMID: 27795400; PubMed Central PMCID: PMC5080384. eng.
  • Scharn CR, Collins AC, Nair VR, et al. Heme Oxygenase-1 Regulates Inflammation and Mycobacterial Survival in Human Macrophages during Mycobacterium tuberculosis Infection [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. J Immunol. 2016;196(11):4641–4649. doi: 10.4049/jimmunol.1500434. PubMed PMID: 27183573; PubMed Central PMCID: PMC4875857. eng.
  • Hintz SR, Vreman HJ, Stevenson DK. Mortality of metalloporphyrin-treated neonatal rats after light exposure. Dev Pharmacol Ther. 1990;14(3):187–192. PubMed PMID: 2364856; eng.
  • Keino H, Nagae H, Mimura S, et al. Dangerous effects of tin-protoporphyrin plus photoirradiation on neonatal rats [Research Support, Non-U.S. Gov't]. Eur J Pediatr. 1990;149(4):278–279. PubMed PMID: 2303077; eng.
  • Fort FL, Gold J. Phototoxicity of tin protoporphyrin, tin mesoporphyrin, and tin diiododeuteroporphyrin under neonatal phototherapy conditions. Pediatrics. 1989;84(6):1031-=1037. PubMed PMID: 2531365; eng.
  • Land EJ, McDonagh AF, McGarvey DJ, et al. Photophysical studies of tin(IV)-protoporphyrin: potential phototoxicity of a chemotherapeutic agent proposed for the prevention of neonatal jaundice [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Proc Natl Acad Sci U S A. 1988;85(14):5249–5253. PubMed PMID: 3393537; PubMed Central PMCID: PMC281727.eng. doi:10.1073/pnas.85.14.5249.
  • Aas V, Larsen K, Iversen JG. Interferon-gamma elicits a G-protein-dependent Ca2+ signal in human neutrophils after depletion of intracellular Ca2+ stores [Research Support, Non-U.S. Gov't]. Cell Signal. 1999;11(2):101–110. PubMed PMID: 10048787; eng. doi:10.1016/S0898-6568(98)00040-0.
  • Miyake M, Fuchimoto S, Orita K. Differences in intracellular calcium mobilization by interferon-beta and interferon-gamma in RPMI-4788 cells. Exp Cell Biol. 1989;57(2):67–72. PubMed PMID: 2504627; eng.
  • Moustafa A, Habara Y. A novel role for carbon monoxide as a potent regulator of intracellular Ca2+ and nitric oxide in rat pancreatic acinar cells [Research Support, Non-U.S. Gov't]. Am J Physiol Cell Physiol. 2014 Dec 1;307(11):C1039–C1049. doi: 10.1152/ajpcell.00252.2014. PubMed PMID: 25252950; eng.
  • Duckles H, Boycott HE, Al-Owais MM, et al. Heme oxygenase-1 regulates cell proliferation via carbon monoxide-mediated inhibition of T-type Ca2+ channels [Research Support, Non-U.S. Gov't]. Pflugers Arch. 2015;467(2):415–427. doi: 10.1007/s00424-014-1503-5. PubMed PMID: 24744106; PubMed Central PMCID: PMC4293494. eng.
  • Terry CM, Clikeman JA, Hoidal JR, et al. TNF-alpha and IL-1alpha induce heme oxygenase-1 via protein kinase C, Ca2+, and phospholipase A2 in endothelial cells [Research Support, Non-U.S. Gov't]. Am J Physiol. 1999;276(5 Pt 2):H1493–H1501. PubMed PMID: 10330231; eng.
  • Gissel C, Doutheil J, Paschen W. Activation of heme oxygenase-1 expression by disturbance of endoplasmic reticulum calcium homeostasis in rat neuronal cell culture [Research Support, Non-U.S. Gov't]. Neurosci Lett. 1997;231(2):75–78. PubMed PMID: 9291144; eng. doi:10.1016/S0304-3940(97)00528-4.
  • Boehning D, Sedaghat L, Sedlak TW, et al. Heme oxygenase-2 is activated by calcium-calmodulin [Research Support, U.S. Gov't, P.H.S.]. J Biol Chem. 2004;279(30):30927–30930. doi: 10.1074/jbc.C400222200. PubMed PMID: 15175337; eng.
  • Malik ZA, Denning GM, Kusner DJ. Inhibition of Ca(2+) signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. J Exp Med. 2000;191(2):287–302. PubMed PMID: 10637273; PubMed Central PMCID: PMC2195750. eng.
  • Malik ZA, Iyer SS, Kusner DJ. Mycobacterium tuberculosis phagosomes exhibit altered calmodulin-dependent signal transduction: contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. J Immunol. 2001;166(5):3392–33401. PubMed PMID: 11207296; eng.
  • Jayachandran R, Sundaramurthy V, Combaluzier B, et al. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin [Research Support, Non-U.S. Gov't]. Cell. 2007;130(1):37–50. doi: 10.1016/j.cell.2007.04.043. PubMed PMID: 17632055; eng.
  • Ouimet M, Koster S, Sakowski E, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Nat Immunol. 2016;17(6):677–686. doi: 10.1038/ni.3434. PubMed PMID: 27089382; PubMed Central PMCID: PMC4873392. eng.
  • Chandra V, Bhagyaraj E, Nanduri R, et al NR1D1 ameliorates Mycobacterium tuberculosis clearance through regulation of autophagy. Autophagy. 2015;11(11):1987–1997. doi: 10.1080/15548627.2015.1091140. PubMed PMID: 26390081; PubMed Central PMCID: PMC4824569. Eng.
  • Zhang X, Cheng X, Yu L, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun. 2016;7:12109. doi: 10.1038/ncomms12109. PubMed PMID: 27357649; PubMed Central PMCID: PMC4931332. eng. doi:10.1038/ncomms12109.
  • Poss KD, Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Proc Natl Acad Sci U S A. 1997;94(20):10919–10924. PubMed PMID: 9380735; PubMed Central PMCID: PMC23531. eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.