3,247
Views
24
CrossRef citations to date
0
Altmetric
Research Paper - Basic Science

The exoribonuclease Xrn1 is a post-transcriptional negative regulator of autophagy

, , ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 898-912 | Received 07 Sep 2017, Accepted 13 Feb 2018, Published online: 21 Mar 2018

References

  • Feng Y, Yao Z, Klionsky DJ. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 2015 Jun;25(6):354–363. doi:10.1016/j.tcb.2015.02.002. PubMed PMID: 25759175; PubMed Central PMCID: PMC4441840. eng.
  • Frankel LB, Lubas M, Lund AH. Emerging connections between RNA and autophagy. Autophagy. 2017 Jan 02;13(1):3–23. doi:10.1080/15548627.2016.1222992. PubMed PMID: 27715443; PubMed Central PMCID: PMC5240835. eng.
  • Füllgrabe J, Klionsky DJ, Joseph B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol. 2014 Jan;15(1):65–74. doi:10.1038/nrm3716. PubMed PMID: 24326622; eng.
  • Delorme-Axford E, Donker RB, Mouillet J-F, Chu T, Bayer A, Ouyang Y, Wang T, Stolz DB, Sarkar SN, Morelli AE, et al. Human placental trophoblasts confer viral resistance to recipient cells. PNAS. 2013 Jul 16;110(29):12048–12053. doi:10.1073/pnas.1304718110. PubMed PMID: 23818581; PubMed Central PMCID: PMC3718097. eng.
  • Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, Liu C-G, Yang J-M. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy. 2009 Aug;5(6):816–823. PubMed PMID: 19535919; PubMed Central PMCID: PMC3669137. eng.
  • Drinnenberg IA, Weinberg DE, Xie KT, Mower JP, Wolfe KH, Fink GR, Bartel DP. RNAi in budding yeast. Science (New York, NY). 2009 Oct 23;326(5952):544–550. doi:10.1126/science.1176945. PubMed PMID: 19745116; PubMed Central PMCID: PMC3786161. eng.
  • Garneau NL, Wilusz J, Wilusz CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol. 2007 Feb;8(2):113–126. doi:10.1038/nrm2104. PubMed PMID: 17245413; eng.
  • Parker R. RNA degradation in Saccharomyces cerevisae. Genetics. 2012 Jul;191(3):671–702. doi:10.1534/genetics.111.137265. PubMed PMID: 22785621; PubMed Central PMCID: PMC3389967. eng.
  • Labno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. Biochim Biophys Acta. 2016 Dec;1863(12):3125–3147. doi:10.1016/j.bbamcr.2016.09.023. PubMed PMID: 27713097; eng.
  • Nagarajan VK, Jones CI, Newbury SF, Green PJ. XRN 5'–>3' exoribonucleases: structure, mechanisms and functions. Biochim Biophys Acta. 2013 Jun-Jul;1829(6-7):590–603. doi:10.1016/j.bbagrm.2013.03.005. PubMed PMID: 23517755; PubMed Central PMCID: PMC3742305. eng.
  • Sheth U. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science (New York, NY). 2003 May 02;300(5620):805–808. doi:10.1126/science.1082320. PubMed PMID: 12730603; PubMed Central PMCID: PMC1876714. eng.
  • Kulkarni M, Ozgur S, Stoecklin G. On track with P-bodies. Biochem Soc Trans. 2010 Feb;38(Pt 1):242–251. doi:10.1042/bst0380242. PubMed PMID: 20074068; eng.
  • Decker CJ, Parker R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol. 2012 Sep 01;4(9):a012286. doi:10.1101/cshperspect.a012286. PubMed PMID: 22763747; PubMed Central PMCID: PMC3428773. eng.
  • Hu W, Sweet TJ, Chamnongpol S, Baker KE, Coller J. Co-translational mRNA decay in Saccharomyces cerevisiae. Nature. 2009 Sep 10;461(7261):225–229. doi:10.1038/nature08265. PubMed PMID: 19701183; PubMed Central PMCID: PMC2745705. eng.
  • Jones CI, Zabolotskaya MV, Newbury SF. The 5' –>3' exoribonuclease XRN1/Pacman and its functions in cellular processes and development. Wiley Interdiscip Rev RNA. 2012 Jul-Aug;3(4):455–468. doi:10.1002/wrna.1109. PubMed PMID: 22383165; eng.
  • Orban TI. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA (New York, NY). 2005 Apr;11(4):459–469. doi:10.1261/rna.7231505. PubMed PMID: 15703439; PubMed Central PMCID: PMC1370735. eng.
  • Wery M, Descrimes M, Vogt N, Dallongeville A-S, Gautheret D, Morillon A. Nonsense-Mediated Decay Restricts LncRNA Levels in Yeast Unless Blocked by Double-Stranded RNA Structure. Mol Cell. 2016 Feb 04;61(3):379–392. doi:10.1016/j.molcel.2015.12.020. PubMed PMID: 26805575; PubMed Central PMCID: PMC4747904. eng.
  • Sinturel F, Navickas A, Wery M, Descrimes M, Morillon A, Torchet C, Benard L. Cytoplasmic Control of Sense-Antisense mRNA Pairs. Cell Rep. 2015 Sep 22;12(11):1853–1864. doi:10.1016/j.celrep.2015.08.016. PubMed PMID: 26344770; eng.
  • Geisler S, Coller J. XRN1: A Major 5' to 3' Exoribonuclease in Eukaryotic Cells. The Enzymes. 2012;31:97–114. doi:10.1016/b978-0-12-404740-2.00005-7. PubMed PMID: 27166442; eng. PMID: 27166442
  • van Dijk EL, Chen CL, d'Aubenton-Carafa Y, Gourvennec S, Kwapisz M, Roche V, Bertrand C, Silvain M, Legoix-Né P, Loeillet S, et al. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature. 2011 Jun 22;475(7354):114–117. doi:10.1038/nature10118. PubMed PMID: 21697827; eng.
  • Doma MK, Parker R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature. 2006 Mar 23;440(7083):561–564. doi:10.1038/nature04530. PubMed PMID: 16554824; PubMed Central PMCID: PMC1839849. eng.
  • Geisler S, Lojek L, Khalil A, Baker K, Coller J. Decapping of long noncoding RNAs regulates inducible genes. Mol Cell. 2012 Feb 10;45(3):279–291. doi:10.1016/j.molcel.2011.11.025. PubMed PMID: 22226051; PubMed Central PMCID: PMC3278590. eng.
  • Thompson DM, Parker R. Cytoplasmic decay of intergenic transcripts in Saccharomyces cerevisiae. Mol Cell Biol. 2007 Jan;27(1):92–101. doi:10.1128/mcb.01023-06. PubMed PMID: 17074811; PubMed Central PMCID: PMC1800667. eng.
  • Medina DA, Jordán-Pla A, Millán-Zambrano G, Chávez S, Choder M, Pérez-Ortín JE. Cytoplasmic 5'-3' exonuclease Xrn1p is also a genome-wide transcription factor in yeast. Front Genet. 2014;5:1. doi:10.3389/fgene.2014.00001. PubMed PMID: 24567736; PubMed Central PMCID: PMC3915102. eng.
  • Haimovich G, Medina D, Causse S, Garber M, Millán-Zambrano G, Barkai O, Chávez S, Pérez-Ortín J, Darzacq X, Choder M. Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis. Cell. 2013 May 23;153(5):1000–1011. doi:10.1016/j.cell.2013.05.012. PubMed PMID: 23706738; eng.
  • Hu G, McQuiston T, Bernard A, Park Y-D, Qiu J, Vural A, Zhang N, Waterman SR, Blewett NH, Myers TG, et al. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol. 2015 Jul;17(7):930–942. doi:10.1038/ncb3189. PubMed PMID: 26098573; PubMed Central PMCID: PMC4528364. eng.
  • Noda T, Klionsky DJ. The quantitative Pho8Delta60 assay of nonspecific autophagy. Methods Enzymol. 2008;451:33–42. doi:10.1016/s0076-6879(08)03203-5. PubMed PMID: 19185711; eng. PMID: 19185711
  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000 Nov 01;19(21):5720–5728. doi:10.1093/emboj/19.21.5720. PubMed PMID: 11060023; PubMed Central PMCID: PMC305793. eng.
  • Delorme-Axford E, Guimaraes RS, Reggiori F, Klionsky DJ. The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression. Methods (San Diego, Calif). 2015 Mar;75:3–12. doi:10.1016/j.ymeth.2014.12.008. PubMed PMID: 25526918; PubMed Central PMCID: PMC4355233. eng.
  • Guimaraes RS, Delorme-Axford E, Klionsky DJ, Reggiori F. Assays for the biochemical and ultrastructural measurement of selective and nonselective types of autophagy in the yeast Saccharomyces cerevisiae. Methods (San Diego, Calif). 2015 Mar;75:141–150. doi:10.1016/j.ymeth.2014.11.023. PubMed PMID: 25484341; eng.
  • Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222. doi:10.1080/15548627.2015.1100356. PubMed PMID: 26799652; PubMed Central PMCID: PMC4835977. eng.
  • Scott SV, Guan J, Hutchins MU, Kim J, Klionsky DJ. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol Cell. 2001 Jun;7(6):1131–1141. PubMed PMID: 11430817; PubMed Central PMCID: PMC2767243. eng.
  • Yorimitsu T, Klionsky DJ. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell. 2005 Apr;16(4):1593–1605. doi:10.1091/mbc.E04-11-1035. PubMed PMID: 15659643; PubMed Central PMCID: PMC1073644. eng.
  • Scott SV, Nice III DC, Nau JJ, Weisman LS, Kamada Y, Keizer-Gunnink I, Funakoshi T, Veenhuis M, Ohsumi Y, Klionsky DJ. Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem. 2000 Aug 18;275(33):25840–25849. doi:10.1074/jbc.M002813200. PubMed PMID: 10837477; eng.
  • Xi Ze, Nair U, Klionsky DJ. Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell. 2008 Aug;19(8):3290–3298. doi:10.1091/mbc.E07-12-1292. PubMed PMID: 18508918; PubMed Central PMCID: PMC2488302. eng.
  • Jin M, He D, Backues S, Freeberg M, Liu X, Kim J, Klionsky D. Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation. Curr Biol. 2014 Jun 16;24(12):1314–1322. doi:10.1016/j.cub.2014.04.048. PubMed PMID: 24881874; eng.
  • Bernard A, Jin M, González-Rodríguez P, Füllgrabe J, Delorme-Axford E, Backues S, Joseph B, Klionsky D. Rph1/KDM4 mediates nutrient-limitation signaling that leads to the transcriptional induction of autophagy. Curr Biol. 2015 Mar 02;25(5):546–555. doi:10.1016/j.cub.2014.12.049. PubMed PMID: 25660547; PubMed Central PMCID: PMC4348152. eng.
  • Backues SK, Chen D, Ruan J, Xie Z, Klionsky DJ. Estimating the size and number of autophagic bodies by electron microscopy. Autophagy. 2014 Jan;10(1):155–164. doi:10.4161/auto.26856. PubMed PMID: 24270884; PubMed Central PMCID: PMC4389869. eng.
  • He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93. doi:10.1146/annurev-genet-102808-114910. PubMed PMID: 19653858; PubMed Central PMCID: PMC2831538. eng.
  • Jin M, Klionsky DJ. Regulation of autophagy: modulation of the size and number of autophagosomes. FEBS Lett. 2014 Aug 01;588(15):2457–2463. doi:10.1016/j.febslet.2014.06.015. PubMed PMID: 24928445; PubMed Central PMCID: PMC4118767. eng.
  • Bernard A, Jin M, Xu Z, Klionsky DJ. A large-scale analysis of autophagy-related gene expression identifies new regulators of autophagy. Autophagy. 2015 Nov 02;11(11):2114–2122. doi:10.1080/15548627.2015.1099796. PubMed PMID: 26649943; PubMed Central PMCID: PMC4824583. eng.
  • Bartholomew CR, Suzuki T, Du Z, Backues SK, Jin M, Lynch-Day MA, Umekawa M, Kamath A, Zhao M, Xie Z, et al. Ume6 transcription factor is part of a signaling cascade that regulates autophagy. PNAS. 2012 Jul 10;109(28):11206–11210. doi:10.1073/pnas.1200313109. PubMed PMID: 22733735; PubMed Central PMCID: PMC3396506. eng.
  • Yao Z, Delorme-Axford E, Backues SK, Klionsky DJ. Atg41/Icy2 regulates autophagosome formation. Autophagy. 2015;11(12):2288–2299. doi:10.1080/15548627.2015.1107692. PubMed PMID: 26565778; PubMed Central PMCID: PMC4835205. eng.
  • Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature. 1998 Sep 24;395(6700):395–398. doi:10.1038/26506. PubMed PMID: 9759731; eng.
  • Sun M, Schwalb B, Pirkl N, Maier K, Schenk A, Failmezger H, Tresch A, Cramer P. Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels. Mol Cell. 2013 Oct 10;52(1):52–62. doi:10.1016/j.molcel.2013.09.010. PubMed PMID: 24119399; eng.
  • Solinger JA, Pascolini D, Heyer W-D. Active-site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis. Mol Cell Biol. 1999 Sep;19(9):5930–5942. PubMed PMID: 10454540; PubMed Central PMCID: PMC84450. eng.
  • Page AM, Davis K, Molineux C, Kolodner RD, Johnson AW. Mutational analysis of exoribonuclease I from Saccharomyces cerevisiae. Nucleic Acids Res. 1998 Aug 15;26(16):3707–3716. PubMed PMID: 9685486; PubMed Central PMCID: PMC147754. eng.
  • Magasanik B, Kaiser CA. Nitrogen regulation in Saccharomyces cerevisiae. Gene. 2002 May 15;290(1–2):1–18. PubMed PMID: 12062797; eng.
  • Carrozza MJ, Florens L, Swanson SK, Shia W-J, Anderson S, Yates J, Washburn MP, Workman JL. Stable incorporation of sequence specific repressors Ash1 and Ume6 into the Rpd3L complex. Biochim Biophys Acta. 2005 Nov 10;1731(2):77–87; discussion 75–6. doi:10.1016/j.bbaexp.2005.09.005. PubMed PMID: 16314178; eng.
  • Kadosh D, Struhl K. Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev. 1998 Mar 15;12(6):797–805. PubMed PMID: 9512514; PubMed Central PMCID: PMC316629. eng.
  • Vidal M, Gaber RF. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Dec;11(12):6317–6327. PubMed PMID: 1944291; PubMed Central PMCID: PMC361826. eng.
  • Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010 Feb 05;140(3):313–326. doi:10.1016/j.cell.2010.01.028. PubMed PMID: 20144757; PubMed Central PMCID: PMC2852113. eng.
  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999 Dec 09;402(6762):672–676. doi:10.1038/45257. PubMed PMID: 10604474; eng.
  • Bampton ETW, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy. 2005 Apr;1(1):23–36. PubMed PMID: 16874023; eng.
  • Katayama H, Yamamoto A, Mizushima N, Yoshimori T, Miyawaki A. GFP-like proteins stably accumulate in lysosomes. Cell Struct Funct. 2008;33(1):1–12. PubMed PMID: 18256512; eng.
  • Schlegel A, Giddings TH, Jr, Ladinsky MS, Kirkegaard K. Cellular origin and ultrastructure of membranes induced during poliovirus infection. J Virol. 1996 Oct;70(10):6576–6588. PubMed PMID: 8794292; PubMed Central PMCID: PMC190698. eng.
  • Suhy DA, Giddings TH, Kirkegaard K. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol. 2000 Oct;74(19):8953–8965. PubMed PMID: 10982339; PubMed Central PMCID: PMC102091. eng.
  • Kemball CC, Alirezaei M, Flynn CT, Wood MR, Harkins S, Kiosses WB, Whitton JL. Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J Virol. 2010 Dec;84(23):12110–12124. doi:10.1128/jvi.01417-10. PubMed PMID: 20861268; PubMed Central PMCID: PMC2976412. eng.
  • Delorme-Axford E, Sadovsky Y, Coyne CB. Lipid raft- and SRC family kinase-dependent entry of coxsackievirus B into human placental trophoblasts. J Virol. 2013 Aug;87(15):8569–8581. doi:10.1128/jvi.00708-13. PubMed PMID: 23720726; PubMed Central PMCID: PMC3719791. eng.
  • Staring J, von Castelmur E, Blomen VA, van den Hengel LG, Brockmann M, Baggen J, Thibaut HJ, Nieuwenhuis J, Janssen H, van Kuppeveld FJM, et al. PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature. 2017 Jan 19;541(7637):412–416. doi:10.1038/nature21032. PubMed PMID: 28077878; eng.
  • Delorme-Axford E, Morosky S, Bomberger J, Stolz DB, Jackson WT, Coyne CB. BPIFB3 regulates autophagy and coxsackievirus B replication through a noncanonical pathway independent of the core initiation machinery. mBio. 2014 Dec 09;5(6):e02147. doi:10.1128/mBio.02147-14. PubMed PMID: 25491355; PubMed Central PMCID: PMC4324245. eng.
  • Harris K, Morosky S, Drummond C, Patel M, Kim C, Stolz D, Bergelson J, Cherry S, Coyne C. RIP3 Regulates Autophagy and Promotes Coxsackievirus B3 Infection of Intestinal Epithelial Cells. Cell Host Microbe. 2015 Aug 12;18(2):221–232. doi:10.1016/j.chom.2015.07.007. PubMed PMID: 26269957; PubMed Central PMCID: PMC4562276. eng.
  • Jack WT, Giddings TH, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 2005 May;3(5):e156. doi:10.1371/journal.pbio.0030156. PubMed PMID: 15884975; PubMed Central PMCID: PMC1084330. eng.
  • Richards AL, Jackson WT. Intracellular vesicle acidification promotes maturation of infectious poliovirus particles. PLoS Pathog. 2012;8(11):e1003046. doi:10.1371/journal.ppat.1003046. PubMed PMID: 23209416; PubMed Central PMCID: PMC3510256. eng. PMID: 23209416
  • Wong J, Zhang J, Si X, Gao G, Mao I, McManus BM, Luo H. Autophagosome supports coxsackievirus B3 replication in host cells. J Virol. 2008 Sep;82(18):9143–9153. doi:10.1128/jvi.00641-08. PubMed PMID: 18596087; PubMed Central PMCID: PMC2546883. eng.
  • Dougherty JD, White JP, Lloyd RE. Poliovirus-mediated disruption of cytoplasmic processing bodies. J Virol. 2011 Jan;85(1):64–75. doi:10.1128/jvi.01657-10. PubMed PMID: 20962086; PubMed Central PMCID: PMC3014174. eng.
  • Bird SW, Maynard ND, Covert MW, Kirkegaard K. Nonlytic viral spread enhanced by autophagy components. PNAS. 2014 Sep 09;111(36):13081–13086. doi:10.1073/pnas.1401437111. PubMed PMID: 25157142; PubMed Central PMCID: PMC4246951. eng.
  • Poole TL, Stevens A. Structural modifications of RNA influence the 5' exoribonucleolytic hydrolysis by XRN1 and HKE1 of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1997 Jun 27;235(3):799–805. doi:10.1006/bbrc.1997.6877. PubMed PMID: 9207242; eng.
  • Geng J, Klionsky DJ. Quantitative regulation of vesicle formation in yeast nonspecific autophagy. Autophagy. 2008 Oct;4(7):955–957. PubMed PMID: 18758231; eng.
  • Maxon ME, Herskowitz I. Ash1p is a site-specific DNA-binding protein that actively represses transcription. PNAS. 2001 Feb 13;98(4):1495–1500. doi:10.1073/pnas.98.4.1495. PubMed PMID: 11171979; PubMed Central PMCID: PMC29285. eng.
  • Jackson WT. Viruses and the autophagy pathway. Virology. 2015 May;479–480:450–456. doi:10.1016/j.virol.2015.03.042. PubMed PMID: 25858140; eng.
  • Lennemann NJ, Coyne CB. Catch me if you can: the link between autophagy and viruses. PLoS Pathog. 2015 Mar;11(3):e1004685. doi:10.1371/journal.ppat.1004685. PubMed PMID: 25811485; PubMed Central PMCID: PMC4374752. eng.
  • Richards AL, Jackson WT. How positive-strand RNA viruses benefit from autophagosome maturation. J Virol. 2013 Sep;87(18):9966–9972. doi:10.1128/jvi.00460-13. PubMed PMID: 23760248; PubMed Central PMCID: PMC3754026. eng.
  • Chapman EG, Moon SL, Wilusz J, Kieft JS. RNA structures that resist degradation by Xrn1 produce a pathogenic Dengue virus RNA. eLife. 2014 Apr 01;3:e01892. doi:10.7554/eLife.01892. PubMed PMID: 24692447; PubMed Central PMCID: PMC3968743. eng.
  • Akiyama BM, Laurence HM, Massey AR, Costantino DA, Xie X, Yang Y, Shi P-Y, Nix JC, Beckham JD, Kieft JS. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science (New York, NY). 2016 Dec 02;354(6316):1148–1152. doi:10.1126/science.aah3963. PubMed PMID: 27934765; eng.
  • Ariumi Y, Kuroki M, Kushima Y, Osugi K, Hijikata M, Maki M, Ikeda M, Kato N. Hepatitis C virus hijacks P-body and stress granule components around lipid droplets. J Virol. 2011 Jul;85(14):6882–6892. doi:10.1128/jvi.02418-10. PubMed PMID: 21543503; PubMed Central PMCID: PMC3126564. eng.
  • Roby J, Pijlman G, Wilusz J, Khromykh A. Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses. 2014 Jan 27;6(2):404–427. doi:10.3390/v6020404. PubMed PMID: 24473339; PubMed Central PMCID: PMC3939463. eng.
  • Funk A, Truong K, Nagasaki T, Torres S, Floden N, Balmori Melian E, Edmonds J, Dong H, Shi P-Y, Khromykh AA. RNA structures required for production of subgenomic flavivirus RNA. J Virol. 2010 Nov;84(21):11407–11417. doi:10.1128/jvi.01159-10. PubMed PMID: 20719943; PubMed Central PMCID: PMC2953152. eng.
  • Pijlman GP, Funk A, Kondratieva N, Leung J, Torres S, van der Aa L, Liu WJ, Palmenberg AC, Shi P-Y, Hall RA, et al. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 2008 Dec 11;4(6):579–591. doi:10.1016/j.chom.2008.10.007. PubMed PMID: 19064258; eng.
  • Zhang K, Dion N, Fuchs B, Damron T, Gitelis S, Irwin R, O'Connor M, Schwartz H, Scully SP, Rock MG, Bolander ME, et al. The human homolog of yeast SEP1 is a novel candidate tumor suppressor gene in osteogenic sarcoma. Gene. 2002 Oct 02;298(2):121–127. PubMed PMID: 12426100; eng.
  • Pashler AL, Towler BP, Jones CI, Newbury SF. The roles of the exoribonucleases DIS3L2 and XRN1 in human disease. Biochem Soc Trans. 2016 Oct 15;44(5):1377–1384. doi:10.1042/bst20160107. PubMed PMID: 27911720; eng.
  • Rowley PA, Ho B, Bushong S, Johnson A, Sawyer SL. XRN1 is a species-specific virus restriction factor in yeasts. PLoS Pathog. 2016 Oct;12(10):e1005890. doi:10.1371/journal.ppat.1005890. PubMed PMID: 27711183; PubMed Central PMCID: PMC5053509. eng.
  • Esteban R, Vega L, Fujimura T. 20S RNA narnavirus defies the antiviral activity of SKI1/XRN1 in Saccharomyces cerevisiae. J Biol Chem. 2008 Sep 19;283(38):25812–25820. doi:10.1074/jbc.M804400200. PubMed PMID: 18640978; PubMed Central PMCID: PMC3258869. eng.
  • Longtine MS, Mckenzie III A, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998 Jul;14(10):953–961. doi:10.1002/(sici)1097-0061(199807)14:10<953::aid-yea293>3.0.co;2-u. PubMed PMID: 9717241; eng.
  • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002 Mar 15;30(6):23e. PubMed PMID: 11884642; PubMed Central PMCID: PMC101367. eng.
  • Ran F, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013 Nov;8(11):2281–2308. doi:10.1038/nprot.2013.143. PubMed PMID: 24157548; PubMed Central PMCID: PMC3969860. eng.
  • Maynell LA, Kirkegaard K, Klymkowsky MW. Inhibition of poliovirus RNA synthesis by brefeldin A. J Virol. 1992 Apr;66(4):1985–94. PubMed PMID: 1312615; PubMed Central PMCID: PMC288987. eng.
  • Coyne CB, Kim KS, Bergelson JM. Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2. EMBO J. 2007 Sep 05;26(17):4016–4028. doi:10.1038/sj.emboj.7601831. PubMed PMID: 17717529; PubMed Central PMCID: PMC1994131. eng.
  • Coyne CB, Bergelson JM. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell. 2006 Jan 13;124(1):119–131. doi:10.1016/j.cell.2005.10.035. PubMed PMID: 16413486; eng.
  • Li C, Wen A, Shen B, Lu J, Huang Y, Chang Y. FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotech. 2011 Oct 12;11:92. doi:10.1186/1472-6750-11-92. PubMed PMID: 21992524; PubMed Central PMCID: PMC3207894. eng.
  • N'Diaye E-N, Kajihara KK, Hsieh I, Morisaki H, Debnath J, Brown EJ. PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep. 2009 Feb;10(2):173–179. doi:10.1038/embor.2008.238. PubMed PMID: 19148225; PubMed Central PMCID: PMC2637314. eng.
  • Thibault PA, Huys A, Amador-Cañizares Y, Gailius JE, Pinel DE, Wilson JA. Regulation of Hepatitis C Virus Genome Replication by Xrn1 and MicroRNA-122 Binding to Individual Sites in the 5' Untranslated Region. J Virol. 2015 Jun;89(12):6294–6311. doi:10.1128/jvi.03631-14. PubMed PMID: 25855736; PubMed Central PMCID: PMC4474307. eng.
  • Huang W-P, Scott SV, Kim J, Klionsky DJ. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem. 2000 Feb 25;275(8):5845–5851. PubMed PMID: 10681575; eng.
  • Klionsky DJ. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J Cell Biol. 1992 Oct;119(2):287–299. PubMed PMID: 1400574; PubMed Central PMCID: PMC2289658. eng.
  • Tomashek JJ, Sonnenburg JL, Artimovich JM, Klionsky DJ. Resolution of subunit interactions and cytoplasmic subcomplexes of the yeast vacuolar proton-translocating ATPase. J Biol Chem. 1996 Apr 26;271(17):10397–10404. PubMed PMID: 8626613; eng.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif). 2001 Dec;25(4):402–408. doi:10.1006/meth.2001.1262. PubMed PMID: 11846609; eng.
  • Cheong H, Klionsky DJ. Biochemical methods to monitor autophagy-related processes in yeast. Methods Enzymol. 2008;451:1–26. doi:10.1016/s0076-6879(08)03201-1. PubMed PMID: 19185709; eng. PMID: 19185709
  • Noda T, Matsuura A, Wada Y, Ohsumi Y. Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1995 May 5;210(1):126–132. doi:10.1006/bbrc.1995.1636. PubMed PMID: 7741731; eng.
  • Mateo R, Nagamine CM, Spagnolo J, Mendez E, Rahe M, Gale M, Yuan J, Kirkegaard K. Inhibition of cellular autophagy deranges dengue virion maturation. J Virol. 2013 Feb;87(3):1312–1321. doi:10.1128/jvi.02177-12. PubMed PMID: 23175363; PubMed Central PMCID: PMC3554187. eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.