3,203
Views
30
CrossRef citations to date
0
Altmetric
Research Paper - Basic Science

ROS is the major player in regulating altered autophagy and lifespan in sin-3 mutants of C. elegans

ORCID Icon, &
Pages 1239-1255 | Received 30 Jun 2017, Accepted 02 May 2018, Published online: 20 Jul 2018

References

  • Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays. 1998 Aug;20(8):615–626. PubMed PMID: 9780836; eng.
  • Silverstein RA, Ekwall K. Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet. 2005 Jan;47(1):1–17. PubMed PMID: 15565322; eng.
  • Bernstein BE, Tong JK, Schreiber SL. Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13708–13713. PubMed PMID: 11095743; PubMed Central PMCID: PMCPmc17640. eng.
  • Fazzio TG, Kooperberg C, Goldmark JP, et al. Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol. 2001 Oct;21(19):6450–6460. PubMed PMID: 11533234; PubMed Central PMCID: PMCPmc99792. eng.
  • Pile LA, Spellman PT, Katzenberger RJ, et al. The SIN3 deacetylase complex represses genes encoding mitochondrial proteins: implications for the regulation of energy metabolism. J Biol Chem. 2003 Sep 26;278(39):37840–37848. PubMed PMID: 12865422; eng.
  • Das TK, Sangodkar J, Negre N, et al. Sin3a acts through a multi-gene module to regulate invasion in Drosophila and human tumors. Oncogene. 2013 Jun 27;32(26):3184–3197. PubMed PMID: 22890320; PubMed Central PMCID: PMCPmc3696049. eng.
  • Wysocka J, Myers MP, Laherty CD, et al. Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev. 2003 Apr 1;17(7):896–911. PubMed PMID: 12670868; PubMed Central PMCID: PMCPmc196026. eng.
  • Kadosh D, Struhl K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell. 1997 May 2;89(3):365–371. PubMed PMID: 9150136; eng.
  • Washburn BK, Esposito RE. Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast. Mol Cell Biol. 2001 Mar;21(6):2057–2069. PubMed PMID: 11238941; PubMed Central PMCID: PMCPmc86811. eng.
  • Ayer DE, Lawrence QA, Eisenman RN. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell. 1995 Mar 10;80(5):767–776. PubMed PMID: 7889570; eng.
  • Grzenda A, Lomberk G, Zhang JS, et al. Sin3: master scaffold and transcriptional corepressor. Biochim Biophys Acta. 2009 Jun-Aug;1789(6–8):443–450. PubMed PMID: 19505602; PubMed Central PMCID: PMCPmc3686104. eng.
  • Kadamb R, Mittal S, Bansal N, et al. Sin3: insight into its transcription regulatory functions. Eur J Cell Biol. 2013 Aug-Sep;92(8–9):237–246. PubMed PMID: 24189169; eng.
  • Liu M, Pile LA. The transcriptional corepressor SIN3 directly regulates genes involved in methionine catabolism and affects histone methylation, linking epigenetics and metabolism. J Biol Chem. 2017 Feb 3;292(5):1970–1976.
  • Barnes VL, Strunk BS, Lee I, et al. Loss of the SIN3 transcriptional corepressor results in aberrant mitochondrial function. BMC Biochem. 2010;11:26. PubMed PMID: 20618965; PubMed Central PMCID: PMCPmc2909972. eng.
  • Barnes VL, Bhat A, Unnikrishnan A, et al. SIN3 is critical for stress resistance and modulates adult lifespan. Aging. 2014 Aug;6(8):645–660. PubMed PMID: 25133314; PubMed Central PMCID: PMCPmc4169859. eng.
  • Potukuchi A, Addepally U, Sindhu K, et al. Increased total DNA damage and oxidative stress in brain are associated with decreased longevity in high sucrose diet fed WNIN/Gr-Ob obese rats. Nutr Neurosci. 2017;1–9. DOI:10.1080/1028415X.2017.1332509
  • Pyo J-O, Yoo S-M, Ahn -H-H, et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun. 2013;4:2300. doi:10.1038/ncomms3300.
  • Thondamal M, Witting M, Schmitt-Kopplin P, et al. Steroid hormone signalling links reproduction to lifespan in dietary-restricted Caenorhabditis elegans [Article]. Nat Commun. 2014 Sep 11;5:4879. online.
  • Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000 Nov 9;408(6809):239–247. print.
  • D’Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8(10): 813–824. 10//print.
  • Mizushima N. Autophagy: process and function. Genes Dev. 2007 Nov 15;21(22):2861–2873. PubMed PMID: 18006683; eng.
  • Blagosklonny MV. Aging: ROS or TOR. Cell Cycle (Georgetown, Tex). 2008 Nov 1;7(21):3344–3354. .
  • Bartholomew CR, Suzuki T, Du Z, et al. Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11206–11210. PubMed PMID: 22733735; PubMed Central PMCID: PMCPmc3396506. eng.
  • Aihara M, Jin X, Kurihara Y, et al. Tor and the Sin3–rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast. J Cell Sci. 2014;127(14):3184–3196.
  • Melendez A, Talloczy Z, Seaman M, et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science (New York, NY). 2003 Sep 5;301(5638):1387–1391. PubMed PMID: 12958363; eng.
  • Jia K, Levine B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy. 2007 Nov-Dec;3(6):597–599. PubMed PMID: 17912023; eng.
  • Tavernarakis N, Pasparaki A, Tasdemir E, et al. The effects of p53 on whole organism longevity are mediated by autophagy. Autophagy. 2008 Oct;4(7):870–873. PubMed PMID: 18728385; eng.
  • Toth ML, Sigmond T, Borsos E, et al. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy. 2008 Apr;4(3):330–338. PubMed PMID: 18219227; eng.
  • Dwivedi M, Song HO, Ahnn J. Autophagy genes mediate the effect of calcineurin on life span in C. elegans. Autophagy. 2009 Jul;5(5):604–607. PubMed PMID: 19279398; eng.
  • Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001 Mar 8;410(6825):227–230. PubMed PMID: 11242085; eng.
  • Morselli E, Maiuri MC, Markaki M, et al. The life span-prolonging effect of sirtuin-1 is mediated by autophagy. Autophagy. 2010 Jan;6(1):186–188. PubMed PMID: 20023410; eng.
  • Morselli E, Maiuri MC, Markaki M, et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis. 2010;1:e10. PubMed PMID: 21364612; PubMed Central PMCID: PMCPmc3032517. eng.
  • Eisenberg T, Knauer H, Schauer A, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009 Nov;11(11):1305–1314. PubMed PMID: 19801973; eng.
  • Sui X, Chen R, Wang Z, et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 2013;4:e838. PubMed PMID: 24113172; PubMed Central PMCID: PMCPmc3824660. eng.
  • Madeo F, Zimmermann A, Maiuri MC, et al. Essential role for autophagy in life span extension. J Clin Invest. 2015 Jan;125(1):85–93. PubMed PMID: 25654554; PubMed Central PMCID: PMCPmc4382258. eng.
  • Bergmann A. Autophagy and cell death: no longer at odds. Cell. 2007;131(6):1032–1034.
  • Li C, Liu H, Sun Y, et al. PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J Mol Cell Biol. 2009;1(1):37–45.
  • Yang Z, Zhao T-Z, Zou Y-J, et al. Hypoxia induces autophagic cell death through hypoxia-inducible factor 1α in microglia. PloS One. 2014;9(5):e96509.
  • Kang C, You Y-J, Avery L. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 2007 Sep 1;21(17):2161–2171. .
  • Wang CW, Klionsky DJ. The molecular mechanism of autophagy. Mol Med. 2003 Mar-Apr;9(3–4):65–76. PubMed PMID: 12865942; PubMed Central PMCID: PMCPmc1430730. eng.
  • Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010 May;221(1):3–12. PubMed PMID: 20225336; PubMed Central PMCID: PMCPmc2990190. eng.
  • Lapierre LR, De Magalhaes Filho CD, McQuary PR, et al. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun. 2013;4. PubMed PMID: 23925298; PubMed Central PMCID: PMCPmc3866206. eng. DOI:10.1038/ncomms3267.
  • Nakamura S, Karalay Ö, Jäger PS, et al. Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals. Nat Commun. 2016;7. PubMed PMID: 27001890; PubMed Central PMCID: PMCPmc4804169. eng. DOI:10.1038/ncomms10944.
  • Hwang AB, Lee SJ. Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging. 2011 Mar;3(3):304–310. PubMed PMID: 21389351; PubMed Central PMCID: PMCPmc3091523. eng.
  • Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008 Apr 18;283(16):10892–10903. PubMed PMID: 18281291; PubMed Central PMCID: PMCPmc2447655. eng.
  • Palikaras K, Lionaki E, Tavernarakis N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature. 2015 May 28;521(7553):525–528. PubMed PMID: 25896323; eng.
  • Li J, Ebata A, Dong Y, et al. Caenorhabditis elegans HCF-1 functions in longevity maintenance as a DAF-16 regulator. PLoS Biol. 2008 Sep 30;6(9):e233. PubMed PMID: 18828672; PubMed Central PMCID: PMCPmc2553839. eng.
  • Wang X, Cook LF, Grasso LM, et al. Royal jelly-mediated prolongevity and stress resistance in caenorhabditis elegans is possibly modulated by the interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 proteins. J Gerontol A Biol Sci Med Sci. 2015 Jul;70(7):827–838. PubMed PMID: 25073462; eng.
  • Zalba G, Fortuño A, Díez J. Oxidative stress and atherosclerosis in early chronic kidney disease. Nephrol Dial Transplant. 2006;21(10):2686–2690.
  • Sun X, Komatsu T, Lim J, et al. Nutrient-dependent requirement for SOD1 in lifespan extension by protein restriction in Drosophila melanogaster. Aging Cell. 2012 Oct;11(5):783–793. PubMed PMID: 22672579; PubMed Central PMCID: PMCPmc3444681. eng.
  • Sun J, Molitor J, Tower J. Effects of simultaneous over-expression of Cu/ZnSOD and MnSOD on Drosophila melanogaster life span. Mech Ageing Dev. 2004 May;125(5):341–349. PubMed PMID: 15130751; eng.
  • Yanase S, Yasuda K, Ishii N. Adaptive responses to oxidative damage in three mutants of Caenorhabditis elegans (age-1, mev-1 and daf-16) that affect life span. Mech Ageing Dev. 2002 Nov;123(12):1579–1587. PubMed PMID: 12470895; eng.
  • Honda Y, Honda S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 1999 Aug;13(11):1385–1393. PubMed PMID: 10428762; eng.
  • Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990;186:407–421. PubMed PMID: 2233308; eng.
  • Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res. 1999 Mar 8;424(1–2):83–95. PubMed PMID: 10064852; eng.
  • Siddique YH, Jyoti S, Naz F, et al. Validation of 1-methyl-2-phenylindole method for estimating lipid peroxidation in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg (9.). Pharm Methods. 2012 Jul;3(2):94–97. PubMed PMID: 23781486; PubMed Central PMCID: PMCPmc3658091. eng.
  • Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008 Feb;10(2):179–206. PubMed PMID: 18020963; eng.
  • Blacker TS, Marsh RJ, Duchen MR, et al. Activated barrier crossing dynamics in the non-radiative decay of NADH and NADPH. Chem Phys. 2013;422:184–194. .
  • Rahman I, MacNee W. Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J. 2000 Sep;16(3):534–554. PubMed PMID: 11028671; eng.
  • Reczek CR, Chandel NS. ROS-dependent signal transduction. Curr Opin Cell Biol. 2015 Apr;33:8–13. PubMed PMID: 25305438; PubMed Central PMCID: PMCPmc4380867. eng.
  • Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2006;1(6):3159–3165. PubMed PMID: 17406579; eng.
  • Mijaljica D, Prescott M, Devenish RJ. Autophagy in disease. Methods Mol Biol. 2010;648:79–92. PubMed PMID: 20700706; eng.
  • Sridhar S, Botbol Y, Macian F, et al. Autophagy and disease: always two sides to a problem. J Pathol. 2012 Jan;226(2):255–273. PubMed PMID: 21990109; PubMed Central PMCID: PMCPmc3996449. eng.
  • Matsumoto H, Miyazaki S, Matsuyama S, et al. Selection of autophagy or apoptosis in cells exposed to ER-stress depends on ATF4 expression pattern with or without CHOP expression. Biol Open. 2013;2(10):1084–1090. PubMed PMID: 24167719; PubMed Central PMCID: PMCPmc3798192. eng.
  • Janga SC, Moreno-Hagelsieb G. Conservation of adjacency as evidence of paralogous operons. Nucleic Acids Res. 2004;32(18):5392–5397. PubMed PMID: 15477389; PubMed Central PMCID: PMCPmc524292. eng.
  • Fitch WM. Homology a personal view on some of the problems. Trends Genet. 2000 May;16(5):227–231. PubMed PMID: 10782117; eng.
  • Choy SW, Wong YM, Ho SH, et al. C. elegans SIN-3 and its associated HDAC corepressor complex act as mediators of male sensory ray development. Biochem Biophys Res Commun. 2007 Jul 6;358(3):802–807. PubMed PMID: 17506990; eng.
  • Gabaldon T, Koonin EV. Functional and evolutionary implications of gene orthology. Nat Reviews Genet. 2013 May;14(5):360–366. PubMed PMID: 23552219; eng.
  • Lange PS, Chavez JC, Pinto JT, et al. ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J Exp Med. 2008 May 12;205(5):1227–1242. PubMed PMID: 18458112; PubMed Central PMCID: PMCPmc2373852. eng.
  • Bellot G, Garcia-Medina R, Gounon P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009 May;29(10):2570–2581. PubMed PMID: 19273585; PubMed Central PMCID: PMCPmc2682037. eng.
  • B’Chir W, Maurin AC, Carraro V, et al. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013 Sep;41(16):7683–7699. PubMed PMID: 23804767; PubMed Central PMCID: PMCPmc3763548. eng.
  • Zhu K, Jiao H, Li S, et al. ATF4 promotes bone angiogenesis by increasing VEGF expression and release in the bone environment. J Bone Miner Res. 2013 Sep;28(9):1870–1884. PubMed PMID: 23649506; PubMed Central PMCID: PMCPmc4394202. eng.
  • De Nadal E, Zapater M, Alepuz PM, et al. The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature. 2004 Jan 22;427(6972):370–374. PubMed PMID: 14737171; eng.
  • Kato T, Shimono Y, Hasegawa M, et al. Characterization of the HDAC1 complex that regulates the sensitivity of cancer cells to oxidative stress. Cancer Res. 2009 Apr 15;69(8):3597–3604. PubMed PMID: 19351825; eng.
  • Van Raamsdonk JM, Hekimi S. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet. 2009 Feb;5(2):e1000361. PubMed PMID: 19197346; PubMed Central PMCID: PMCPmc2628729. eng.
  • Van Raamsdonk JM, Hekimi S. Superoxide dismutase is dispensable for normal animal lifespan. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5785–5790. PubMed PMID: 22451939; PubMed Central PMCID: PMCPmc3326508. eng.
  • Petriv OI, Rachubinski RA. Lack of peroxisomal catalase causes a progeric phenotype in caenorhabditis elegans. J Biol Chem. 2004 May 7;279(19):19996–20001. .
  • Xia W, Wang Z, Wang Q, et al. Roles of NAD(+)/NADH and NADP(+)/NADPH in cell death. Curr Pharm Des. 2009;15(1):12–19. PubMed PMID: 19149598; eng.
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. PubMed PMID: 4366476; PubMed Central PMCID: PMCPmc1213120. eng.
  • Stiernagle T. Maintenance of C. elegans (February 11, 2006), wormbook, ed. The C. elegans research community, wormbook. DOI:10.1895/wormbook.1.101.1.2006.
  • Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc. 2006;1(2):581–585. PubMed PMID: 17406285; eng.
  • Pandey R, Saluja D. Hydrogen peroxide agarose gels for electrophoretic analysis of RNA. Anal Biochem. 2017 Oct 1;534(Supplement C):24–27. .
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Calif). 2001 Dec;25(4):402–408. PubMed PMID: 11846609; eng.
  • Yang HC, Chen TL, Wu YH, et al. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans. Cell Death Dis. 2013;4:e616. PubMed PMID: 23640458; PubMed Central PMCID: PMCPmc3674345. eng.
  • Liao VH, Yu CW, Chu YJ, et al. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev. 2011 Oct;132(10):480–487. PubMed PMID: 21855561; eng.
  • Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 2010 Jan;5(1):51–66. PubMed PMID: 20057381; PubMed Central PMCID: PMCPmc2830880. eng.
  • Gerard-Monnier D, Erdelmeier I, Regnard K, et al. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol. 1998 Oct;11(10):1176–1183. PubMed PMID: 9778314; eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.