3,282
Views
21
CrossRef citations to date
0
Altmetric
Review

Vacuolar hydrolysis and efflux: current knowledge and unanswered questions

ORCID Icon & ORCID Icon
Pages 212-227 | Received 04 May 2018, Accepted 18 Oct 2018, Published online: 22 Nov 2018

References

  • Li SC, Kane PM The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta. 2009 Apr;1793(4):650–663. PubMed PMID: 18786576; PubMed Central PMCID: PMCPMC2906225. eng.
  • Teichert U, Mechler B, Müller H, et al. Lysosomal (vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival. J Biol Chem. 1989 Sep;264(27):16037–16045. PubMed PMID: 2674123; eng.
  • Feyder S, De Craene JO, Bär S, et al. Membrane trafficking in the yeast Saccharomyces cerevisiae model. Int J Mol Sci. 2015 Jan;16(1):1509–1525. PubMed PMID: 25584613; PubMed Central PMCID: PMCPMC4307317. eng.
  • Wen X, Klionsky DJ An overview of macroautophagy in yeast. J Mol Biol. 2016 May;428(9 Pt A):1681–1699. PubMed PMID: 26908221; PubMed Central PMCID: PMCPMC4846508. eng.
  • Reggiori F, Klionsky DJ Autophagic processes in yeast: mechanism, machinery and regulation. Genetics. 2013 Jun;194(2):341–361. PubMed PMID: 23733851; PubMed Central PMCID: PMCPMC3664846. eng.
  • Suzuki K, Kirisako T, Kamada Y, et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. Embo J. 2001 Nov;20(21):5971–5981. PubMed PMID: 11689437; PubMed Central PMCID: PMCPMC125692. eng.
  • Mizushima N The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol. 2010 Apr;22(2):132–139. PubMed PMID: 20056399; eng.
  • Greiner-Tollersrud OK, Berg T, Saftig P. Lysosomal storage disorders. Boston, MA: Springer US; 2005. p. 60–73.
  • Boustany RM Lysosomal storage diseases–the horizon expands. Nat Rev Neurol. 2013 Oct;9(10):583–598. PubMed PMID: 23938739; eng.
  • Meikle PJ, Hopwood JJ, Clague AE, et al. Prevalence of lysosomal storage disorders. JAMA. 1999 Jan;281(3):249–254. PubMed PMID: 9918480; eng.
  • Poorthuis BJ, Wevers RA, Kleijer WJ, et al. The frequency of lysosomal storage diseases in The Netherlands. Hum Genet. 1999 Jul-Aug; 105 (1–2): 151–156. PubMed PMID: 10480370; eng.
  • Frankel LB, Lubas M, Lund AH Emerging connections between RNA and autophagy. Autophagy. 2017 Jan;13(1):3–23. PubMed PMID: 27715443; PubMed Central PMCID: PMCPMC5240835. eng.
  • Irie M Structure-function relationships of acid ribonucleases: lysosomal, vacuolar, and periplasmic enzymes. Pharmacol Ther. 1999 Feb;81(2):77–89. PubMed PMID: 10190580; eng.
  • MacIntosh GC, Bariola PA, Newbigin E, et al. Characterization of Rny1, the Saccharomyces cerevisiae member of the T2 RNase family of RNases: unexpected functions for ancient enzymes? Proc Natl Acad Sci U S A. 2001 Jan;98(3):1018–1023. PubMed PMID: 11158587; PubMed Central PMCID: PMCPMC14701. eng.
  • Huang H, Kawamata T, Horie T, et al. Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast. Embo J. 2015 Jan;34(2):154–168. PubMed PMID: 25468960; PubMed Central PMCID: PMCPMC4337068. eng.
  • Müller M, Schmidt O, Angelova M, et al. The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation. Elife. 2015 Apr;4:e07736. PubMed PMID: 25902403; PubMed Central PMCID: PMCPMC4424281. eng.
  • Haud N, Kara F, Diekmann S, et al. rnaset2 mutant zebrafish model familial cystic leukoencephalopathy and reveal a role for RNase T2 in degrading ribosomal RNA. Proc Natl Acad Sci U S A. 2011 Jan;108(3):1099–1103. PubMed PMID: 21199949; PubMed Central PMCID: PMCPMC3024650. eng.
  • Henneke M, Diekmann S, Ohlenbusch A, et al. RNASET2-deficient cystic leukoencephalopathy resembles congenital cytomegalovirus brain infection. Nat Genet. 2009 Jul;41(7):773–775. PubMed PMID: 19525954; eng.
  • Takeshige K, Baba M, Tsuboi S, et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 1992 Oct;119(2):301–311. PubMed PMID: 1400575; PubMed Central PMCID: PMCPMC2289660. eng.
  • Wiederhold E, Gandhi T, Permentier HP, et al. The yeast vacuolar membrane proteome. Mol Cell Proteomics. 2009 Feb;8(2):380–392. PubMed PMID: 19001347; eng.
  • Vickers MF, Yao SY, Baldwin SA, et al. Nucleoside transporter proteins of Saccharomyces cerevisiae. Demonstration of a transporter (FUI1) with high uridine selectivity in plasma membranes and a transporter (FUN26) with broad nucleoside selectivity in intracellular membranes. J Biol Chem. 2000 Aug;275(34):25931–25938. PubMed PMID: 10827169; eng.
  • Boswell-Casteel RC, Johnson JM, Duggan KD, et al. FUN26 (function unknown now 26) protein from saccharomyces cerevisiae is a broad selectivity, high affinity, nucleoside and nucleobase transporter. J Biol Chem. 2014 Aug;289(35):24440–24451. PubMed PMID: 25035431; PubMed Central PMCID: PMCPMC4148870. eng.
  • Lu SP, Lin SJ Phosphate-responsive signaling pathway is a novel component of NAD+ metabolism in Saccharomyces cerevisiae. J Biol Chem. 2011 Apr;286(16):14271–14281. PubMed PMID: 21349851; PubMed Central PMCID: PMCPMC3077628. eng.
  • Barbosa AD, Siniossoglou S Function of lipid droplet-organelle interactions in lipid homeostasis. Biochim Biophys Acta. 2017 Sep;1864(9):1459–1468. PubMed PMID: 28390906; eng.
  • Li D, Song JZ, Li H, et al. Storage lipid synthesis is necessary for autophagy induced by nitrogen starvation. FEBS Lett. 2015 Jan;589(2):269–276. PubMed PMID: 25500271; eng.
  • Shpilka T, Welter E, Borovsky N, et al. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. Embo J. 2015 Aug;34(16):2117–2131. PubMed PMID: 26162625; PubMed Central PMCID: PMCPMC4557665. eng.
  • Wang CW Lipid droplet dynamics in budding yeast. Cell Mol Life Sci. 2015 Jul;72(14):2677–2695. PubMed PMID: 25894691; eng.
  • van Zutphen T, Todde V, de Boer R, et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell. 2014 Jan;25(2):290–301. PubMed PMID: 24258026; PubMed Central PMCID: PMCPMC3890349. eng.
  • Wang CW, Miao YH, Chang YS A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J Cell Biol. 2014 Aug;206(3):357–366. PubMed PMID: 25070953; PubMed Central PMCID: PMCPMC4121974. eng.
  • Vevea JD, Garcia EJ, Chan RB, et al. Role for lipid droplet biogenesis and microlipophagy in adaptation to lipid imbalance in yeast. Dev Cell. 2015 Dec;35(5):584–599. PubMed PMID: 26651293; PubMed Central PMCID: PMCPMC4679156. eng.
  • Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature. 2009 Apr;458(7242):1131–1135. PubMed PMID: 19339967; PubMed Central PMCID: PMCPMC2676208. eng.
  • Martinez-Lopez N, Singh R Autophagy and lipid droplets in the liver. Annu Rev Nutr. 2015;35:215–237. PubMed PMID: 26076903; eng.
  • Ramya V, Rajasekharan R ATG15 encodes a phospholipase and is transcriptionally regulated by YAP1 in Saccharomyces cerevisiae. FEBS Lett. 2016 Sep;590(18):3155–3167. PubMed PMID: 27543826; eng.
  • Epple UD, Suriapranata I, Eskelinen EL, et al. Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole. J Bacteriol. 2001 Oct;183(20):5942–5955. PubMed PMID: 11566994; PubMed Central PMCID: PMCPMC99673. eng.
  • Teter SA, Eggerton KP, Scott SV, et al. Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem. 2001 Jan;276(3):2083–2087. PubMed PMID: 11085977; PubMed Central PMCID: PMCPMC2749705. eng.
  • Klionsky DJ, Herman PK, Emr SD The fungal vacuole: composition, function, and biogenesis. Microbiol Rev. 1990 Sep;54(3):266–292. PubMed PMID: 2215422; PubMed Central PMCID: PMCPMC372777. eng.
  • Yang SY, Huang TK, Kuo HF, et al. Role of vacuoles in phosphorus storage and remobilization. J Exp Bot. 2017 Jan. doi: 10.1093/jxb/erw481. PubMed PMID: 28077447; eng.
  • Kornberg A Inorganic polyphosphate: a molecule of many functions. Prog Mol Subcell Biol. 1999;23:1–18. PubMed PMID: 10448669; eng.
  • Saito K, Ohtomo R, Kuga-Uetake Y, et al. Direct labeling of polyphosphate at the ultrastructural level in Saccharomyces cerevisiae by using the affinity of the polyphosphate binding domain of Escherichia coli exopolyphosphatase. Appl Environ Microbiol. 2005 Oct;71(10):5692–5701. PubMed PMID: 16204477; PubMed Central PMCID: PMCPMC1266008. eng.
  • Gerasimaitė R, Mayer A Enzymes of yeast polyphosphate metabolism: structure, enzymology and biological roles. Biochem Soc Trans. 2016 Feb;44(1):234–239. PubMed PMID: 26862210; eng.
  • Gerasimaitė R, Sharma S, Desfougères Y, et al. Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J Cell Sci. 2014 Dec;127(Pt 23):5093–5104. doi: 10.1242/jcs.159772. PubMed PMID: 25315834; eng.
  • Cohen A, Perzov N, Nelson H, et al. A novel family of yeast chaperons involved in the distribution of V-ATPase and other membrane proteins. J Biol Chem. 1999 Sep;274(38):26885–26893. PubMed PMID: 10480897; eng.
  • Hothorn M, Neumann H, Lenherr ED, et al. Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science. 2009 Apr;324(5926):513–516. PubMed PMID: 19390046; eng.
  • Desfougères Y, Gerasimaitė RU, Jessen HJ, et al. Vtc5, a novel subunit of the vacuolar transporter chaperone complex, regulates polyphosphate synthesis and phosphate homeostasis in yeast. J Biol Chem. 2016 Oct;291(42):22262–22275. PubMed PMID: 27587415; PubMed Central PMCID: PMCPMC5064005. eng.
  • Ogawa N, DeRisi J, Brown PO New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell. 2000 Dec;11(12):4309–4321. PubMed PMID: 11102525; PubMed Central PMCID: PMCPMC15074. eng.
  • Reggiori F, Pelham HR Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. Embo J. 2001 Sep;20(18):5176–5186. PubMed PMID: 11566881; PubMed Central PMCID: PMCPMC125630. eng.
  • Shi X, Kornberg A Endopolyphosphatase in Saccharomyces cerevisiae undergoes post-translational activations to produce short-chain polyphosphates. FEBS Lett. 2005 Mar;579(9):2014–2018. PubMed PMID: 15792812; eng.
  • Sethuraman A, Rao NN, Kornberg A The endopolyphosphatase gene: essential in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2001 Jul;98(15):8542–8547. PubMed PMID: 11447286; PubMed Central PMCID: PMCPMC37472. eng.
  • Hürlimann HC, Stadler-Waibel M, Werner TP, et al. Pho91 Is a vacuolar phosphate transporter that regulates phosphate and polyphosphate metabolism in Saccharomyces cerevisiae. Mol Biol Cell. 2007 Nov;18(11):4438–4445. PubMed PMID: 17804816; PubMed Central PMCID: PMCPMC2043573. eng.
  • Lichko LP, Kulakovskaya TV, Kulakovskaya EV, et al. Inactivation of PPX1 and PPN1 genes encoding exopolyphosphatases of Saccharomyces cerevisiae does not prevent utilization of polyphosphates as phosphate reserve. Biochemistry (Mosc). 2008 Sep;73(9):985–989. PubMed PMID: 18976214; eng.
  • Huh WK, Falvo JV, Gerke LC, et al. Global analysis of protein localization in budding yeast. Nature. 2003 Oct;425(6959):686–691. PubMed PMID: 14562095; eng.
  • Gerasimaitė R, Mayer A Ppn2, a novel Zn(2+)-dependent polyphosphatase in the acidocalcisome-like yeast vacuole. J Cell Sci. 2017 May;130(9):1625–1636. PubMed PMID: 28302909; eng.
  • Pisoni RL, Lindley ER Incorporation of [32P]orthophosphate into long chains of inorganic polyphosphate within lysosomes of human fibroblasts. J Biol Chem. 1992 Feb;267(6):3626–3631. PubMed PMID: 1740414; eng.
  • Moreno-Sanchez D, Hernandez-Ruiz L, Fa R, et al. Polyphosphate is a novel pro-inflammatory regulator of mast cells and is located in acidocalcisomes. J Biol Chem. 2012 Aug;287(34):28435–28444. PubMed PMID: 22761438; PubMed Central PMCID: PMCPMC3436523. eng.
  • Lonetti A, Szijgyarto Z, Bosch D, et al. Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. J Biol Chem. 2011 Sep;286(37):31966–31974. PubMed PMID: 21775424; PubMed Central PMCID: PMCPMC3173201. eng.
  • Uttenweiler A, Schwarz H, Neumann H, et al. The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell. 2007 Jan;18(1):166–175. PubMed PMID: 17079729; PubMed Central PMCID: PMCPMC1751332. eng.
  • Yokota H, Gomi K, Shintani T Induction of autophagy by phosphate starvation in an Atg11-dependent manner in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2017 Jan;483(1):522–527. PubMed PMID: 28013049; eng.
  • Van der Wilden W, Matile P, Schellenberg M, et al. Vacuolar membranes: isolation from yeast cells. Z Naturforsch 28c. 1973:416–421.
  • Opheim DJ alpha-D-Mannosidase of Saccharomyces cerevisiae. Characterization and modulation of activity. Biochim Biophys Acta. 1978 May;524(1):121–130. PubMed PMID: 350285; eng.
  • Yoshihisa T, Anraku Y A novel pathway of import of alpha-mannosidase, a marker enzyme of vacuolar membrane, in Saccharomyces cerevisiae. J Biol Chem. 1990 Dec;265(36):22418–22425. PubMed PMID: 2266133; eng.
  • Yoshihisa T, Ohsumi Y, Anraku Y Solubilization and purification of alpha-mannosidase, a marker enzyme of vacuolar membranes in Saccharomyces cerevisiae. J Biol Chem. 1988 Apr;263(11):5158–5163. PubMed PMID: 3281936; eng.
  • Chantret I, Frénoy JP, Moore SE Free-oligosaccharide control in the yeast Saccharomyces cerevisiae: roles for peptide: N-glycanase(Png1p) and vacuolar mannosidase (Ams1p). Biochem J. 2003 Aug;373(Pt 3):901–908. PubMed PMID: 12723970; PubMed Central PMCID: PMCPMC1223533. eng.
  • Umekawa M, Ujihara M, Makishima K, et al. The signaling pathways underlying starvation-induced upregulation of α-mannosidase Ams1 in Saccharomyces cerevisiae. Biochim Biophys Acta. 2016 Jun;1860(6):1192–1201. PubMed PMID: 26947009; eng.
  • Cebollero E, Reggiori F Regulation of autophagy in yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 2009 Sep;1793(9):1413–1421. PubMed PMID: 19344676; eng.
  • Van Den Hazel HB, Kielland-Brandt MC, Winther JR Review: biosynthesis and function of yeast vacuolar proteases. Yeast. 1996 Jan;12(1):1–16. PubMed PMID: 8789256; eng.
  • Lillie SH, Pringle JR Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980 Sep;143(3):1384–1394. PubMed PMID: 6997270; PubMed Central PMCID: PMCPMC294518. eng.
  • Elbein AD, Pan YT, Pastuszak I, et al. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003 Apr;13(4):17R–27R. PubMed PMID: 12626396; eng.
  • Eleutherio E, Panek A, De Mesquita JF, et al. Revisiting yeast trehalose metabolism. Curr Genet. 2015 Aug;61(3):263–274. PubMed PMID: 25209979; eng.
  • François J, Parrou JL Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001 Jan;25(1):125–145. PubMed PMID: 11152943; eng.
  • Keller F, Schellenberg M, Wiemken A Localization of trehalase in vacuoles and of trehalose in the cytosol of yeast (Saccharomyces cerevisiae). Arch Microbiol. 1982 Jun;131(4):298–301. PubMed PMID: 7052008; eng.
  • Mittenbühler K, Holzer H Purification and characterization of acid trehalase from the yeast suc2 mutant. J Biol Chem. 1988 Jun;263(17):8537–8543. PubMed PMID: 3286651; eng.
  • Huang J, Reggiori F, Klionsky DJ The transmembrane domain of acid trehalase mediates ubiquitin-independent multivesicular body pathway sorting. Mol Biol Cell. 2007 Jul;18(7):2511–2524. PubMed PMID: 17475771; PubMed Central PMCID: PMCPMC1924822. eng.
  • Jules M, Guillou V, François J, et al. Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 2004 May;70(5):2771–2778. PubMed PMID: 15128531; PubMed Central PMCID: PMCPMC404389. eng.
  • He S, Bystricky K, Leon S, et al. The Saccharomyces cerevisiae vacuolar acid trehalase is targeted at the cell surface for its physiological function. FEBS J. 2009 Oct;276(19):5432–5446. PubMed PMID: 19703229; eng.
  • Kim J, Alizadeh P, Harding T, et al. Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications. Appl Environ Microbiol. 1996 May;62(5):1563–1569. PubMed PMID: 8633854; PubMed Central PMCID: PMCPMC167930. eng.
  • Nwaka S, Mechler B, Holzer H Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose. FEBS Lett. 1996 May; 386 (2–3): 235–238. PubMed PMID: 8647289; eng.
  • Wilson WA, Roach PJ, Montero M, et al. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev. 2010 Nov;34(6):952–985. PubMed PMID: 20412306; PubMed Central PMCID: PMCPMC2927715. eng.
  • Wang Z, Wilson WA, Fujino MA, et al. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol. 2001 Sep;21(17):5742–5752. PubMed PMID: 11486014; PubMed Central PMCID: PMCPMC87294. eng.
  • Barbet NC, Schneider U, Helliwell SB, et al. TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell. 1996 Jan;7(1):25–42. PubMed PMID: 8741837; PubMed Central PMCID: PMCPMC278610. eng.
  • Wilson WA, Wang Z, Roach PJ Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level. Mol Cell Proteomics. 2002 Mar;1(3):232–242. PubMed PMID: 12096123; eng.
  • Hwang PK, Tugendreich S, Fletterick RJ Molecular analysis of GPH1, the gene encoding glycogen phosphorylase in Saccharomyces cerevisiae. Mol Cell Biol. 1989 Apr;9(4):1659–1666. PubMed PMID: 2657401; PubMed Central PMCID: PMCPMC362584. eng.
  • Teste MA, Enjalbert B, Parrou JL, et al. The Saccharomyces cerevisiae YPR184w gene encodes the glycogen debranching enzyme. FEMS Microbiol Lett. 2000 Dec;193(1):105–110. PubMed PMID: 11094287; eng.
  • Colonna WJ, Magee PT Glycogenolytic enzymes in sporulating yeast. J Bacteriol. 1978 Jun;134(3):844–853. PubMed PMID: 350852; PubMed Central PMCID: PMCPMC222331. eng.
  • Yamashita I, Fukui S Transcriptional control of the sporulation-specific glucoamylase gene in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1985 Nov;5(11):3069–3073. PubMed PMID: 3939312; PubMed Central PMCID: PMCPMC369120. eng.
  • Pugh TA, Shah JC, Magee PT, et al. Characterization and localization of the sporulation glucoamylase of Saccharomyces cerevisiae. Biochim Biophys Acta. 1989 Feb;994(3):200–209. PubMed PMID: 2493265; eng.
  • Fukuda T, Ahearn M, Roberts A, et al. Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease. Mol Ther. 2006 Dec;14(6):831–839. PubMed PMID: 17008131; PubMed Central PMCID: PMCPMC2693339. eng.
  • Kishnani PS, Hwu WL, Mandel H, et al. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr. 2006 May;148(5):671–676. PubMed PMID: 16737883; eng.
  • van den Hout HM, Hop W, van Diggelen OP, et al. The natural course of infantile Pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics. 2003 Aug;112(2):332–340. PubMed PMID: 12897283; eng.
  • Palma M, Goffeau A, Spencer-Martins I, et al. A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts. J Mol Microbiol Biotechnol. 2007; 12 (3–4): 241–248. PubMed PMID: 17587872; eng.
  • Suzuki K Selective autophagy in budding yeast. Cell Death Differ. 2013 Jan;20(1):43–48. doi: 10.1038/cdd.2012.73. PubMed PMID: 22705847; PubMed Central PMCID: PMCPMC3524628. eng.
  • Kanki T, Furukawa K, Yamashita S Mitophagy in yeast: molecular mechanisms and physiological role. Biochim Biophys Acta. 2015 Oct;1853(10 Pt B):2756–2765. PubMed PMID: 25603537; eng.
  • Aoki Y, Kanki T, Hirota Y, et al. Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol Biol Cell. 2011 Sep;22(17):3206–3217. PubMed PMID: 21757540; PubMed Central PMCID: PMCPMC3164466. eng.
  • Farré JC, Burkenroad A, Burnett SF, et al. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep. 2013 May;14(5):441–449. PubMed PMID: 23559066; PubMed Central PMCID: PMCPMC3642380. eng.
  • Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system mediates protein lipidation. Nature. 2000 Nov;408(6811):488–492. PubMed PMID: 11100732; eng.
  • Okamoto K, Kondo-Okamoto N, Ohsumi Y Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell. 2009 Jul;17(1):87–97. PubMed PMID: 19619494; eng.
  • Epple UD, Eskelinen EL, Thumm M Intravacuolar membrane lysis in Saccharomyces cerevisiae. Does vacuolar targeting of Cvt17/Aut5p affect its function? J Biol Chem. 2003 Mar;278(10):7810–7821. PubMed PMID: 12499386; eng.
  • Ashrafi G, Schwarz TL The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013 Jan;20(1):31–42. PubMed PMID: 22743996; PubMed Central PMCID: PMCPMC3524633. eng.
  • Wallace DC A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407. PubMed PMID: 16285865; PubMed Central PMCID: PMCPMC2821041. eng.
  • Pickrell AM, Youle RJ The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015 Jan;85(2):257–273. PubMed PMID: 25611507; PubMed Central PMCID: PMCPMC4764997. eng.
  • Rodolfo C, Campello S, Cecconi F Mitophagy in neurodegenerative diseases. Neurochem Int. 2017 Aug. doi: 10.1016/j.neuint.2017.08.004. PubMed PMID: 28797885; eng.
  • Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998 Apr;392(6676):605–608. PubMed PMID: 9560156; eng.
  • Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol. 2004 Sep;56(3):336–341. PubMed PMID: 15349860; eng.
  • Kvam E, Goldfarb DS Nucleus-vacuole junctions and piecemeal microautophagy of the nucleus in S. cerevisiae. Autophagy. 2007 Mar-Apr;3(2):85–92. PubMed PMID: 17204844; eng.
  • Pan X, Roberts P, Chen Y, et al. Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. Mol Biol Cell. 2000 Jul;11(7):2445–2457. PubMed PMID: 10888680; PubMed Central PMCID: PMCPMC14931. eng.
  • Roberts P, Moshitch-Moshkovitz S, Kvam E, et al. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell. 2003 Jan;14(1):129–141. PubMed PMID: 12529432; PubMed Central PMCID: PMCPMC140233. eng.
  • Krick R, Muehe Y, Prick T, et al. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell. 2008 Oct;19(10):4492–4505. PubMed PMID: 18701704; PubMed Central PMCID: PMCPMC2555948. eng.
  • Dreyer T Substrate specificity of proteinase yscA from saccharomyces cerevisiae. Carlsberg Res Commun. 1989;54(3):85–97. PubMed PMID: 2478140; eng.
  • Ammerer G, Hunter CP, Rothman JH, et al. PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors. Mol Cell Biol. 1986 Jul;6(7):2490–2499. PubMed PMID: 3023936; PubMed Central PMCID: PMCPMC367803. eng.
  • Woolford CA, Daniels LB, Park FJ, et al. The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases. Mol Cell Biol. 1986 Jul;6(7):2500–2510. PubMed PMID: 3537721; PubMed Central PMCID: PMCPMC367804. eng.
  • Moehle CM, Tizard R, Lemmon SK, et al. Protease B of the lysosomelike vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases. Mol Cell Biol. 1987 Dec;7(12):4390–4399. PubMed PMID: 3325823; PubMed Central PMCID: PMCPMC368122. eng.
  • Lenney JF, Matile P, Wiemken A, et al. Activities and cellular localization of yeast proteases and their inhibitors. Biochem Biophys Res Commun. 1974 Oct;60(4):1378–1383. PubMed PMID: 4609372; eng.
  • Kominami E, Hoffschulte H, Leuschel L, et al. The substrate specificity of proteinase B from baker’s yeast. Biochim Biophys Acta. 1981 Sep;661(1):136–141. PubMed PMID: 7028121; eng.
  • Knop M, Schiffer HH, Rupp S, et al. Vacuolar/lysosomal proteolysis: proteases, substrates, mechanisms. Curr Opin Cell Biol. 1993 Dec;5(6):990–996. PubMed PMID: 8129953; eng.
  • Zubenko GS, Jones EW Protein degradation, meiosis and sporulation in proteinase-deficient mutants of Saccharomyces cerevisiae. Genetics. 1981 Jan;97(1):45–64. PubMed PMID: 7021321; PubMed Central PMCID: PMCPMC1214387. eng.
  • Hayashi R Carboxypeptidase Y. Methods Enzymol. 1976;45:568–587. PubMed PMID: 13269; eng.
  • Jung G, Ueno H, Hayashi R Carboxypeptidase Y: structural basis for protein sorting and catalytic triad. J Biochem. 1999 Jul;126(1):1–6. PubMed PMID: 10393313; eng.
  • Stennicke HR, Mortensen UH, Breddam K Studies on the hydrolytic properties of (serine) carboxypeptidase Y. Biochemistry. 1996 Jun;35(22):7131–7141. PubMed PMID: 8679540; eng.
  • Nasr F, Bécam AM, Grzybowska E, et al. An analysis of the sequence of part of the right arm of chromosome II of S. cerevisiae reveals new genes encoding an amino-acid permease and a carboxypeptidase. Curr Genet. 1994 Jul;26(1):1–7. PubMed PMID: 7954890; eng.
  • Baxter SM, Rosenblum JS, Knutson S, et al. Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast. Mol Cell Proteomics. 2004 Mar;3(3):209–225. PubMed PMID: 14645503; eng.
  • Wünschmann J, Beck A, Meyer L, et al. Phytochelatins are synthesized by two vacuolar serine carboxypeptidases in Saccharomyces cerevisiae. FEBS Lett. 2007 Apr;581(8):1681–1687. PubMed PMID: 17408619; eng.
  • Parzych KR, Ariosa A, Mari M, et al. A newly characterized vacuolar serine carboxypeptidase, Atg42/Ybr139w, is required for normal vacuole function and the terminal steps of autophagy in the yeast. Mol Biol Cell. 2018 Mar. doi: 10.1091/mbc.E17-08-0516. PubMed PMID: 29514932; eng.
  • Hecht KA, O’Donnell AF, Brodsky JL The proteolytic landscape of the yeast vacuole. Cell Logist. 2014 Jan;4(1):e28023. PubMed PMID: 24843828; PubMed Central PMCID: PMCPMC4022603. eng.
  • Spormann DO, Heim J, Wolf DH Biogenesis of the yeast vacuole (lysosome). The precursor forms of the soluble hydrolase carboxypeptidase yscS are associated with the vacuolar membrane. J Biol Chem. 1992 Apr;267(12):8021–8029. PubMed PMID: 1569061; eng.
  • Spormann DO, Heim J, Wolf DH Carboxypeptidase yscS: gene structure and function of the vacuolar enzyme. Eur J Biochem. 1991 Apr;197(2):399–405. PubMed PMID: 2026161; eng.
  • Wolf DH, Weiser U Studies on a carboxypeptidase Y mutant of yeast and evidence for a second carboxypeptidase Activity. Eur J Biochem. 1977 Mar;73(2):553–556. PubMed PMID: 403073; eng.
  • Yasuhara T, Nakai T, Ohashi A Aminopeptidase Y, a new aminopeptidase from Saccharomyces cerevisiae. Purification, properties, localization, and processing by protease B. J Biol Chem. 1994 May;269(18):13644–13650. PubMed PMID: 8175799; eng.
  • Frey J, Röhm KH Subcellular localization and levels of aminopeptidases and dipeptidase in Saccharomyces cerevisiae. Biochim Biophys Acta. 1978 Nov;527(1):31–41. PubMed PMID: 363165; eng.
  • Metz G, Röhm KH Yeast aminopeptidase I. Chemical composition and catalytic properties. Biochim Biophys Acta. 1976 May;429(3):933–949. PubMed PMID: 5147; eng.
  • Trumbly RJ, Bradley G Isolation and characterization of aminopeptidase mutants of Saccharomyces cerevisiae. J Bacteriol. 1983 Oct;156(1):36–48. PubMed PMID: 6352682; PubMed Central PMCID: PMCPMC215048. eng.
  • Adamis PD, Mannarino SC, Riger CJ, et al. Lap4, a vacuolar aminopeptidase I, is involved in cadmium-glutathione metabolism. Biometals. 2009 Apr;22(2):243–249. PubMed PMID: 18716881; eng.
  • Wilk S, Wilk E, Magnusson RP Purification, characterization, and cloning of a cytosolic aspartyl aminopeptidase. J Biol Chem. 1998 Jun;273(26):15961–15970. PubMed PMID: 9632644; eng.
  • Yokoyama R, Kawasaki H, Hirano H. Identification of yeast aspartyl aminopeptidase gene by purifying and characterizing its product from yeast cells. FEBS J. 2006 Jan;273(1):192–198. PubMed PMID: 16367759; eng.
  • Yuga M, Gomi K, Klionsky DJ, et al. Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. J Biol Chem. 2011 Apr;286(15):13704–13713. PubMed PMID: 21343297; PubMed Central PMCID: PMCPMC3075714. eng.
  • Roberts CJ, Pohlig G, Rothman JH, et al. Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole. J Cell Biol. 1989 Apr;108(4):1363–1373. PubMed PMID: 2647766; PubMed Central PMCID: PMCPMC2115513. eng.
  • Fuller RS, Sterne RE, Thorner J Enzymes required for yeast prohormone processing. Annu Rev Physiol. 1988;50:345–362. doi: 10.1146/annurev.ph.50.030188.002021. PubMed PMID: 3288097; eng.
  • Johnston HD, Foote C, Santeford A, et al. Golgi-to-late endosome trafficking of the yeast pheromone processing enzyme Ste13p is regulated by a phosphorylation site in its cytosolic domain. Mol Biol Cell. 2005 Mar;16(3):1456–1468. PubMed PMID: 15647379; PubMed Central PMCID: PMCPMC551507. eng.
  • Gasch AP, Spellman PT, Kao CM, et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000 Dec;11(12):4241–4257. PubMed PMID: 11102521; PubMed Central PMCID: PMCPMC15070. eng.
  • Scherens B, Feller A, Vierendeels F, et al. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term. FEMS Yeast Res. 2006 Aug;6(5):777–791. PubMed PMID: 16879428; eng.
  • Rupp S, Hirsch HH, Wolf DH Biogenesis of the yeast vacuole (lysosome). Active site mutation in the vacuolar aspartate proteinase yscA blocks maturation of vacuolar proteinases. FEBS Lett. 1991 Nov; 293 (1–2): 62–66. PubMed PMID: 1959673; eng.
  • Nakamura N, Matsuura A, Wada Y, et al. Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. J Biochem. 1997 Feb;121(2):338–344. PubMed PMID: 9089409; eng.
  • Kane PM The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev. 2006 Mar;70(1):177–191. doi: 10.1128/MMBR.70.1.177-191.2006. PubMed PMID: 16524922; PubMed Central PMCID: PMCPMC1393255. eng.
  • Sørensen SO, van Den Hazel HB, Kielland-Brandt MC, et al. pH-dependent processing of yeast procarboxypeptidase Y by proteinase A in vivo and in vitro. Eur J Biochem. 1994 Feb;220(1):19–27. PubMed PMID: 8119286; eng.
  • Yamashiro CT, Kane PM, Wolczyk DF, et al. Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Mol Cell Biol. 1990 Jul;10(7):3737–3749. PubMed PMID: 2141385; PubMed Central PMCID: PMCPMC360825. eng.
  • Mechler B, Hirsch HH, Müller H, et al. Biogenesis of the yeast lysosome (vacuole): biosynthesis and maturation of proteinase yscB. Embo J. 1988 Jun;7(6):1705–1710. PubMed PMID: 3049073; PubMed Central PMCID: PMCPMC457157. eng.
  • Moehle CM, Dixon CK, Jones EW Processing pathway for protease B of Saccharomyces cerevisiae. J Cell Biol. 1989 Feb;108(2):309–325. PubMed PMID: 2645294; PubMed Central PMCID: PMCPMC2115423. eng.
  • Nebes VL, Jones EW Activation of the proteinase B precursor of the yeast Saccharomyces cerevisiae by autocatalysis and by an internal sequence. J Biol Chem. 1991 Dec;266(34):22851–22857. PubMed PMID: 1744078; eng.
  • Hemmings BA, Zubenko GS, Hasilik A, et al. Mutant defective in processing of an enzyme located in the lysosome-like vacuole of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1981 Jan;78(1):435–439. PubMed PMID: 7017716; PubMed Central PMCID: PMCPMC319068. eng.
  • Mechler B, Müller H, Wolf DH Maturation of vacuolar (lysosomal) enzymes in yeast: proteinase yscA and proteinase yscB are catalysts of the processing and activation event of carboxypeptidase yscY. Embo J. 1987 Jul;6(7):2157–2163. PubMed PMID: 3308453; PubMed Central PMCID: PMCPMC553608. eng.
  • Klionsky DJ, Emr SD Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. Embo J. 1989 Aug;8(8):2241–2250. PubMed PMID: 2676517; PubMed Central PMCID: PMCPMC401154. eng.
  • Merz AJ, Wickner WT Resolution of organelle docking and fusion kinetics in a cell-free assay. Proc Natl Acad Sci U S A. 2004 Aug;101(32):11548–11553. PubMed PMID: 15286284; PubMed Central PMCID: PMCPMC511018. eng.
  • Steinfeld R, Reinhardt K, Schreiber K, et al. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet. 2006 Jun;78(6):988–998. PubMed PMID: 16685649; PubMed Central PMCID: PMCPMC1474096. eng.
  • Hiraiwa M Cathepsin A/protective protein: an unusual lysosomal multifunctional protein. Cell Mol Life Sci. 1999 Dec; 56 (11–12): 894–907. doi: 10.1007/s000180050482. PubMed PMID: 11212324; eng.
  • Kaminskyy V, Zhivotovsky B Proteases in autophagy. Biochim Biophys Acta. 2012 Jan;1824(1):44–50. PubMed PMID: 21640203; eng.
  • Turk B, Turk D, Turk V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta. 2000 Mar; 1477 (1–2): 98–111. PubMed PMID: 10708852; eng.
  • Bordallo J, Bordallo C, Gascón S, et al. Molecular cloning and sequencing of genomic DNA encoding yeast vacuolar carboxypeptidase yscS. FEBS Lett. 1991 May;283(1):27–32. PubMed PMID: 1709881; eng.
  • Klionsky DJ, Cueva R, Yaver DS Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J Cell Biol. 1992 Oct;119(2):287–299. PubMed PMID: 1400574; PubMed Central PMCID: PMCPMC2289658. eng.
  • Seguí-Real B, Martinez M, Sandoval IV Yeast aminopeptidase I is post-translationally sorted from the cytosol to the vacuole by a mechanism mediated by its bipartite N-terminal extension. Embo J. 1995 Nov;14(22):5476–5484. PubMed PMID: 8521804; PubMed Central PMCID: PMCPMC394661. eng.
  • Andrei-Selmer C, Knuppel A, Satyanarayana C, et al. A new class of mutants deficient in dodecamerization of aminopeptidase 1 and vacuolar transport. J Biol Chem. 2001 Apr;276(15):11606–11614. PubMed PMID: 11152450; eng.
  • Meister A, Me A. Glutathione. Annu Rev Biochem. 1983;52:711–760. PubMed PMID: 6137189; eng.
  • Penninckx MJ, Elskens MT Metabolism and functions of glutathione in micro-organisms. Adv Microb Physiol. 1993;34:239–301. PubMed PMID: 8095770; eng.
  • Jaspers CJ, Gigot D, Penninckx MJ Pathways of glutathione degradation in the yeast Saccharomyces Cerevisiae. Phytochemistry. 1985;24(4):703–707.
  • Penninckx MJ, Jaspers CJ Molecular and kinetic properties of purified γ-glutamyl transpeptidase from yeast (Saccharomyces cerevisiae). Phytochemistry. 1985;24(9):1913–1918.
  • Jaspers CJ, Penninckx MJ Glutathione metabolism in yeast Saccharomyces cerevisiae. Evidence that gamma-glutamyltranspeptidase is a vacuolar enzyme. Biochimie. 1984 Jan;66(1):71–74. PubMed PMID: 6143574; eng.
  • Mehdi K, Thierie J, Penninckx MJ gamma-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione. Biochem J. 2001 Nov;359(Pt 3):631–637. PubMed PMID: 11672438; PubMed Central PMCID: PMCPMC1222185. eng.
  • Beck A, Lendzian K, Oven M, et al. Phytochelatin synthase catalyzes key step in turnover of glutathione conjugates. Phytochemistry. 2003 Feb;62(3):423–431. PubMed PMID: 12620355; eng.
  • Blum R, Beck A, Korte A, et al. Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J. 2007 Feb;49(4):740–749. PubMed PMID: 17253989; eng.
  • Grzam A, Tennstedt P, Clemens S, et al. Vacuolar sequestration of glutathione S-conjugates outcompetes a possible degradation of the glutathione moiety by phytochelatin synthase. FEBS Lett. 2006 Nov;580(27):6384–6390. PubMed PMID: 17097087; eng.
  • Wünschmann J, Krajewski M, Letzel T, et al. Dissection of glutathione conjugate turnover in yeast. Phytochemistry. 2010 Jan;71(1):54–61. PubMed PMID: 19897216; eng.
  • Mehdi K, Penninckx MJ An important role for glutathione and gamma-glutamyltranspeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae. Microbiology. 1997 Jun;143 (Pt 6):1885–1889. PubMed PMID: 9202464; eng.
  • Springael JY, Penninckx MJ Nitrogen-source regulation of yeast gamma-glutamyl transpeptidase synthesis involves the regulatory network including the GATA zinc-finger factors Gln3, Nil1/Gat1 and Gzf3. Biochem J. 2003 Apr;371(Pt 2):589–595. PubMed PMID: 12529169; PubMed Central PMCID: PMCPMC1223296. eng.
  • Elskens MT, Jaspers CJ, Penninckx MJ Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae. J Gen Microbiol. 1991 Mar;137(3):637–644. PubMed PMID: 1674526; eng.
  • Deffieu M, Bhatia-Kissová I, Salin B, et al. Glutathione participates in the regulation of mitophagy in yeast. J Biol Chem. 2009 May;284(22):14828–14837. PubMed PMID: 19366696; PubMed Central PMCID: PMCPMC2685664. eng.
  • Li ZS, Szczypka M, Lu YP, et al. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem. 1996 Mar;271(11):6509–6517. PubMed PMID: 8626454; eng.
  • Szczypka MS, Wemmie JA, Moye-Rowley WS, et al. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem. 1994 Sep;269(36):22853–22857. PubMed PMID: 7521334; eng.
  • Klein M, Ym M, Eggmann T, et al. The ATP-binding cassette (ABC) transporter Bpt1p mediates vacuolar sequestration of glutathione conjugates in yeast. FEBS Lett. 2002 Jun; 520 (1–3): 63–67. PubMed PMID: 12044871; eng.
  • Rebbeor JF, Connolly GC, Dumont ME, et al. ATP-dependent transport of reduced glutathione on YCF1, the yeast orthologue of mammalian multidrug resistance associated proteins. J Biol Chem. 1998 Dec;273(50):33449–33454. PubMed PMID: 9837923; eng.
  • Sharma KG, Mason DL, Liu G, et al. Localization, regulation, and substrate transport properties of Bpt1p, a Saccharomyces cerevisiae MRP-type ABC transporter. Eukaryot Cell. 2002 Jun;1(3):391–400. PubMed PMID: 12455987; PubMed Central PMCID: PMCPMC118024. eng.
  • Ketterer S, Gomez-Auli A, Hillebrand LE, et al. Inherited diseases caused by mutations in cathepsin protease genes. FEBS J. 2017 May;284(10):1437–1454. PubMed PMID: 27926992; eng.
  • Mole SE, Williams RE, Goebel HH Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics. 2005 Sep;6(3):107–126. PubMed PMID: 15965709; eng.
  • Mole SE, Cotman SL Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta. 2015 Oct;1852(10 Pt B):2237–2241. PubMed PMID: 26026925; PubMed Central PMCID: PMCPMC4567481. eng.
  • Parr CL, Keates RA, Bryksa BC, et al. The structure and function of Saccharomyces cerevisiae proteinase A. Yeast. 2007 Jun;24(6):467–480. PubMed PMID: 17447722; eng.
  • Barohn RJ, Dowd DC, Kagan-Hallet KS Congenital ceroid-lipofuscinosis. Pediatr Neurol. 1992 Jan-Feb;8(1):54–59. PubMed PMID: 1558577; eng.
  • Potier M, Michaud L, Tranchemontagne J, et al. Structure of the lysosomal neuraminidase-beta-galactosidase-carboxypeptidase multienzymic complex. Biochem J. 1990 Apr;267(1):197–202. PubMed PMID: 2109603; PubMed Central PMCID: PMCPMC1131264. eng.
  • Bonten EJ, Annunziata I, d’Azzo A. Lysosomal multienzyme complex: pros and cons of working together. Cell Mol Life Sci. 2014 Jun;71(11):2017–2032. PubMed PMID: 24337808; PubMed Central PMCID: PMCPMC4037752. eng.
  • Maroteaux P, Lamy M [Pyknodysostosis]. Presse Med. 1962 Apr;70:999–1002. PubMed PMID: 14470123; fre.
  • Andren L, Dymling JF, Hogeman KE, et al. Osteopetrosis acro-osteolytica. A syndrome of osteopetrosis, acro-osteolysis and open sutures of the skull. Acta Chir Scand. 1962 Dec;124:496–507. PubMed PMID: 14041042; eng.
  • Sreeramulu B, Shyam ND, Ajay P, et al. Papillon-Lefèvre syndrome: clinical presentation and management options. Clin Cosmet Investig Dent. 2015;7:75–81. PubMed PMID: 26203280; PubMed Central PMCID: PMCPMC4507741. eng.
  • Gorlin RJ, Sedano H, Anderson VE The syndrome of palmar-plantar hyperkeratosis and premature periodontal destruction of the teeth. A clinical and genetic analysis of the Papillon-Lefèvre syndrome. J Pediatr. 1964 Dec;65:895–908. PubMed PMID: 14244097; eng.
  • Haneke E The papillon-lefèvre syndrome: keratosis palmoplantaris with periodontopathy. Report of a case and review of the cases in the literature. Hum Genet. 1979 Sep;51(1):1–35. PubMed PMID: 159254; eng.
  • Sekito T, Fujiki Y, Ohsumi Y, et al. Novel families of vacuolar amino acid transporters. IUBMB Life. 2008 Aug;60(8):519–525. PubMed PMID: 18459165; eng.
  • Russnak R, Konczal D, McIntire SL A family of yeast proteins mediating bidirectional vacuolar amino acid transport. J Biol Chem. 2001 Jun;276(26):23849–23857. PubMed PMID: 11274162; eng.
  • Chardwiriyapreecha S, Mukaiyama H, Sekito T, et al. Avt5p is required for vacuolar uptake of amino acids in the fission yeast Schizosaccharomyces pombe. FEBS Lett. 2010 Jun;584(11):2339–2345. PubMed PMID: 20388511; eng.
  • Sekito T, Chardwiriyapreecha S, Sugimoto N, et al. Vacuolar transporter Avt4 is involved in excretion of basic amino acids from the vacuoles of Saccharomyces cerevisiae. Biosci Biotechnol Biochem. 2014;78(6):969–975. PubMed PMID: 25036121; eng.
  • Nishida I, Watanabe D, Tsolmonbaatar A, et al. Vacuolar amino acid transporters upregulated by exogenous proline and involved in cellular localization of proline in Saccharomyces cerevisiae. J Gen Appl Microbiol. 2016 Jul;62(3):132–139. PubMed PMID: 27246536; eng.
  • Tone J, Yamanaka A, Manabe K, et al. A vacuolar membrane protein Avt7p is involved in transport of amino acid and spore formation in Saccharomyces cerevisiae. Biosci Biotechnol Biochem. 2015;79(2):190–195. doi: 10.1080/09168451.2014.963501. PubMed PMID: 25266154; eng.
  • Yang Z, Huang J, Geng J, et al. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell. 2006 Dec;17(12):5094–5104. PubMed PMID: 17021250; PubMed Central PMCID: PMCPMC1679675. eng.
  • Kalatzis V, Cherqui S, Antignac C, et al. Cystinosin, the protein defective in cystinosis, is a H(+)-driven lysosomal cystine transporter. Embo J. 2001 Nov;20(21):5940–5949. PubMed PMID: 11689434; PubMed Central PMCID: PMCPMC125690. eng.
  • Gao XD, Wang J, Keppler-Ross S, et al. ERS1 encodes a functional homologue of the human lysosomal cystine transporter. FEBS J. 2005 May;272(10):2497–2511. PubMed PMID: 15885099; eng.
  • Simpkins JA, Rickel KE, Madeo M, et al. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration. Biol Open. 2016 Jun;5(6):689–697. PubMed PMID: 27142334; PubMed Central PMCID: PMCPMC4920189. eng.
  • Jézégou A, Llinares E, Anne C, et al. Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proc Natl Acad Sci U S A. 2012 Dec;109(50):E3434–E43. PubMed PMID: 23169667; PubMed Central PMCID: PMCPMC3528584. eng.
  • Onodera J, Ohsumi Y Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem. 2005 Sep;280(36):31582–31586. PubMed PMID: 16027116; eng.
  • Elmonem MA, Veys KR, Soliman NA, et al. Cystinosis: a review. Orphanet J Rare Dis. 2016 Apr;11:47. doi: 10.1186/s13023-016-0426-y. PubMed PMID: 27102039; PubMed Central PMCID: PMCPMC4841061. eng.
  • The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017 Jan;45(D1):D158–D169. PubMed PMID: 27899622; PubMed Central PMCID: PMCPMC5210571. eng.
  • Hecht KA, Wytiaz VA, Ast T, et al. Characterization of an M28 metalloprotease family member residing in the yeast vacuole. FEMS Yeast Res. 2013 Aug;13(5):471–484. PubMed PMID: 23679341; PubMed Central PMCID: PMCPMC3708649. eng.
  • Finn RD, Attwood TK, Babbitt PC, et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 2017 Jan;45(D1):D190–D199. PubMed PMID: 27899635; PubMed Central PMCID: PMCPMC5210578. eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.