4,670
Views
9
CrossRef citations to date
0
Altmetric
Research Paper

Coxsackievirus B3 targets TFEB to disrupt lysosomal function

, , , , , & show all
Pages 3924-3938 | Received 21 Oct 2020, Accepted 25 Feb 2021, Published online: 10 Mar 2021

References

  • Khetsuriani N, Lamonte-Fowlkes A, Oberst S, et al. Centers for disease C, prevention. Enterovirus surveillance–United States, 1970-2005. MMWR Surveill Summ. 2006;55:1–20.
  • Baggen J, Thibaut HJ, Strating JRPM, et al. The life cycle of non-polio enteroviruses and how to target it (vol 16, pg 368, 2018). Nat Rev Microbiol. 2018;16:391.
  • Mohamud Y, Luo H. The intertwined life cycles of enterovirus and autophagy. Virulence. 2019;10:470–480.
  • Lamming DW, Bar-Peled L. Lysosome: the metabolic signaling hub. Traffic. 2019;20:27–38.
  • Medina DL, Di Paola S, Peluso I, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol. 2015;17:288–299.
  • Napolitano G, Ballabio A. TFEB at a glance. J Cell Sci. 2016;129:2475–2481.
  • Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332:1429–1433.
  • Roczniak-Ferguson A, Petit CS, Froehlich F, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012;5:ra42.
  • Sha YB, Rao L, Settembre C, et al. STUB1 regulates TFEB-induced autophagy-lysosome pathway. Embo J. 2017;36:2544–2552.
  • Zhang JB, Wang JG, Zhou ZH, et al. Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors. Autophagy. 2018;14:1043–1059.
  • Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. Embo J. 2012;31:1095–1108.
  • Cortes CJ, Miranda HC, Frankowski H, et al. Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nat Neurosci. 2014;17:1180–1189.
  • Sun D, Chen S, Cheng AC, et al. Roles of the picornaviral 3C proteinase in the viral life cycle and host cells. Viruses-Basel 2016; 8.
  • Jagdeo JM, Dufour A, Klein T, et al. N-terminomics TAILS identifies host cell substrates of poliovirus and Coxsackievirus B3 3C proteinases that modulate virus infection. J Virol. 2018;92(8):e02211-17.
  • Saeed M, Kapell S, Hertz NT, et al. Defining the proteolytic landscape during enterovirus infection. Plos Pathog. 2020;16(9):e1008927.
  • Blom N, Hansen J, Blaas D, et al. Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci. 1996;5:2203–2216.
  • Bampton ETW, Goemans CG, Niranjan D, et al. The dynamics of autophagy visualized in live cells - From autophagosome formation to fusion with endo/lysosomes. Autophagy. 2005;1:23–36.
  • Kliosnky D. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).Autophagy. 2016;12(1):1–222.
  • Fisher DE, Carr CS, Parent LA, et al. Tfeb has DNA-binding and oligomerization properties of a unique helix loop helix leucine-zipper family. Gene Dev. 1991;5:2342–2352.
  • Slade L, Pulinilkunnil T. The MiTF/TFE family of transcription factors: master regulators of organelle signaling, metabolism, and stress adaptation. Mol Cancer Res. 2017;15:1637–1643.
  • Dales S, Eggers HJ, Tamm I, et al. Electron microscopic study of the formation of poliovirus. Virology. 1965;26:379–389.
  • Horne RW, Nagington J. Electron microscope studies of the development and structure of poliomyelitis virus. J Mol Biol. 1959;1:333.
  • Corona AK, Saulsbery HM, Velazquez AFC, et al. Enteroviruses remodel autophagic trafficking through regulation of host SNARE proteins to promote virus replication and cell exit. Cell Rep. 2018;22:3304–3314.
  • Mohamud Y, Shi J, Qu J, et al. Enteroviral infection inhibits autophagic flux via disruption of the SNARE complex to enhance viral replication. Cell Rep. 2018;22:3292–3303.
  • Reddy A, Caler EV, Andrews NW. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell. 2001;106:157–169.
  • Settembre C, Fraldi A, Medina DL, et al. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14:283–296.
  • Gemayel R, Chavali S, Pougach K, et al. Variable glutamine-rich repeats modulate transcription factor activity. Mol Cell. 2015;59:615–627.
  • Gerber HP, Seipel K, Georgiev O, et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science. 1994;263:808–811.
  • Sancak Y, Bar-Peled L, Zoncu R, et al. Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141:290–303.
  • Alirezaei M, Flynn CT, Garcia SD, et al. A food-responsive switch modulates TFEB and autophagy, and determines susceptibility to coxsackievirus infection and pancreatitis. Autophagy. 2020. DOI: https://doi.org/10.1080/15548627.2020.1720425
  • Lloyd RE. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses. Virology. 2015;479:457–474.
  • Giansanti P, Strating J, Defourny KAY, et al. Dynamic remodelling of the human host cell proteome and phosphoproteome upon enterovirus infection. Nat Commun. 2020;11:4332.
  • Harris KG, Coyne CB. Unc93b induces apoptotic cell death and is cleaved by host and enteroviral proteases. Plos One. 2015;10(10): e0141383.
  • Mohamud Y, Qu J, Xue YC, et al. CALCOCO2/NDP52 and SQSTM1/p62 differentially regulate coxsackievirus B3 propagation. Cell Death Differ. 2019;26:1062–1076.
  • Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg. 1938;27:493–497.
  • Davis BD, Dulbecco R, Eisen HN, et al. Nature of viruses. In: Microbiology. New York: Harper and Row; 1972. p. 1044–1053.
  • Deng HY, Liu HT, De Silva T, et al. Coxsackievirus type B3 is a potent oncolytic virus against KRAS-mutant lung adenocarcinoma. Mol Ther Oncolytics. 2019;14:266–278.