8,964
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Modulating FKBP5/FKBP51 and autophagy lowers HTT (huntingtin) levels

, , , , , , , , ORCID Icon, , , , , ORCID Icon, , & show all
Pages 4119-4140 | Received 12 Jul 2020, Accepted 12 Mar 2021, Published online: 24 May 2021

References

  • Group THsDCR. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomesThe Huntington’s Disease Collaborative Research Group. Cell. 1993;72(6):971–983.
  • Hedreen JC, Peyser CE, Folstein SE, et al. Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett. 1991;133(2):257–261.
  • Kiyama H, Seto-Ohshima A, Emson PC. Calbindin D28K as a marker for the degeneration of the striatonigral pathway in Huntington’s disease. Brain Res. 1990;525(2):209–214.
  • Cardoso F. Differential diagnosis of Huntington’s disease: what the clinician should know. Neurodegener Dis Manag. 2014;4(1):67–72.
  • Marxreiter F, Stemick J, Kohl Z. Huntingtin lowering strategies. Int J Mol Sci. 2020;21(6):21.
  • Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, et al. Targeting huntingtin expression in patients with huntington’s disease. N Engl J Med. 2019;380(24):2307–2316.
  • Siekierka JJ, Hung SH, Poe M, et al. A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature. 1989;341(6244):755–757.
  • Cioffi DL, Hubler TR, Scammell JG. Organization and function of the FKBP52 and FKBP51 genes. Curr Opin Pharmacol. 2011;11(4):308–313.
  • Van Duyne GD, Standaert RF, Karplus PA, et al. Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science. 1991;252:839–842.
  • Van Duyne GD, Standaert RF, Karplus PA, et al. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol. 1993;229(1):105–124.
  • Hartmann J, Wagner KV, Liebl C, et al. The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress. Neuropharmacology. 2012;62(1):332–339.
  • Schreiber KH, Ortiz D, Academia EC, et al. Rapamycin-mediatedmTORC2 mTORC2 inhibition is determined by the relative expression of FK506-binding FK506-binding proteins. Aging Cell. 2015;14(2):265–273.
  • Hausch F, Kozany C, Theodoropoulou M, et al. FKBPs and the Akt/mTOR pathway. Cell Cycle. 2013;12(15):2366–2370.
  • Huang S, Pj H. Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol. 2003;3(4):371–377.
  • Yao YL, Liang YC, Huang HH, et al. FKBPs in chromatin modification and cancer. Curr Opin Pharmacol. 2011;11(4):301–307.
  • Gaali S, Kirschner A, Cuboni S, et al. Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat Chem Biol. 2015;11(1):33–37.
  • Harrar Y, Bellini C, Jd F. FKBPs: at the crossroads of folding and transduction. Trends Plant Sci. 2001;6(9):426–431.
  • Riggs DL, Cox MB, Tardif HL, et al. Noncatalytic role of the FKBP52 peptidyl-prolyl isomerase domain in the regulation of steroid hormone signaling. Mol Cell Biol. 2007;27(24):8658–8669.
  • Wochnik GM, Ruegg J, Abel GA, et al. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem. 2005;280(6):4609–4616.
  • Wu B, Li P, Liu Y, et al. 3D structure of human FK506-binding protein 52: implications for the assembly of the glucocorticoid receptor/Hsp90/immunophilin heterocomplex. Proc Natl Acad Sci U S A. 2004;101(22):8348–8353.
  • Blair LJ, Criado-Marrero M, Zheng D, et al. The Disease-Associated Chaperone FKBP51 Impairs Cognitive Function by Accelerating AMPA Receptor Recycling. eNeuro. 2019;6(1). doi:https://doi.org/10.1523/ENEURO.0242-18.2019.
  • Zgajnar NR, De Leo SA, Lotufo CM, et al. Biological Actions of the Hsp90-binding Immunophilins FKBP51 and FKBP52. Biomolecules. 2019;9(2):52. doi:https://doi.org/10.3390/biom9020052.
  • O’Leary JC 3rd, Dharia S, Blair LJ, et al. A new anti-depressive strategy for the elderly: ablation of FKBP5/FKBP51. PLoS One. 2011;6(9):e24840.
  • Touma C, Gassen NC, Herrmann L, et al. FK506 binding protein 5 shapes stress responsiveness: modulation of neuroendocrine reactivity and coping behavior. Biol Psychiatry. 2011;70(10):928–936.
  • Albu S, Romanowski CP, Letizia Curzi M, et al. Deficiency of FK506-binding protein (FKBP) 51 alters sleep architecture and recovery sleep responses to stress in mice. J Sleep Res. 2014;23(2):176–185.
  • Storer CL, Dickey CA, Galigniana MD, et al. FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab. 2011;22(12):481–490.
  • Uk J, Koren J 3rd, Si B, et al. The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci. 2010;30(2):591–599.
  • Criado-Marrero M, Rein T, Binder EB, et al. Hsp90 and FKBP51: complex regulators of psychiatric diseases. Philos Trans R Soc Lond B Biol Sci. 2018;373(1738):373.
  • Taler-Vercic A, Hasanbasic S, Berbic S, et al. Proline residues as switches in conformational changes leading to amyloid fibril formation. Int J Mol Sci. 2017;18(3):18.
  • Schmidt U, Buell DR, Ionescu IA, et al. A role for synapsin in FKBP51 modulation of stress responsiveness: convergent evidence from animal and human studies. Psychoneuroendocrinology. 2015;52:43–58.
  • Daskalakis NP, Binder EB. Schizophrenia in the spectrum of gene-stress interactions: the FKBP5 example. Schizophr Bull. 2015;4130(2):323–9591-9.
  • Blair LJ, Nordhues BA, Hill SE, et al. Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J Clin Invest. 2013;123(10):4158–4169.
  • Boonying W, Joselin A, Huang E, et al. Pink1 regulates FKBP5 FKBP5 interaction withAKT/PHLPP AKT/PHLPP and protects neurons from neurotoxin stress induced byMPP(.)MPP+. J Neurochem. 2019;150(3):312–329.
  • Li H, Su P, Lai TK, et al. The glucocorticoid receptor-FKBP51 complex contributes to fear conditioning and posttraumatic stress disorder. J Clin Invest. 2020;130(2):877–889.
  • Matosin N, Halldorsdottir T, Binder EB. Understanding the molecular mechanisms underpinning gene by environment interactions in psychiatric disorders: the FKBP5 model. Biol Psychiatry. 2018;83(10):821–830.
  • Gerard M, Deleersnijder A, Daniels V, et al. Inhibition of FK506 binding proteins reduces alpha-synuclein aggregation and Parkinson’s disease-like pathology. J Neurosci. 2010;30(7):2454–2463.
  • Gold BG, Nutt JG. Neuroimmunophilin ligands in the treatment of Parkinson’s disease. Curr Opin Pharmacol. 2002;2(1):82–86.
  • Gerard M, Debyser Z, Desender L, et al. The aggregation of alpha-synuclein is stimulated by FK506 binding proteins as shown by fluorescence correlation spectroscopy. Faseb J. 2006;20(3):524–526.
  • Dehay B, Bertolotti A. Critical role of the proline-rich region in Huntingtin for aggregation and cytotoxicity in yeast. J Biol Chem. 2006;281130(47):15877–15889.
  • Darnell G, Orgel JP, Pahl R, et al. Flanking polyproline sequences inhibit beta-sheet structure in polyglutamine segments by inducing PPII-like helix structure. J Mol Biol. 2007;374(3):688–704.
  • Bhattacharyya A, Thakur AK, Chellgren VM, et al. Oligoproline effects on polyglutamine conformation and aggregation. J Mol Biol. 2006;355(3):524–535.
  • Wetzel R. Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol. 2012;421(4–5):466–490.
  • Wagner AS, Politi AZ, Ast A, et al. Self-assembly of mutant huntingtin exon-1 fragments into large complex fibrillar structures involves nucleated branching. J Mol Biol. 2018;430(12):1725–1744.
  • Ring KL, An MC, Zhang N, O’Brien RN, Ramos EM, Gao F, et al. Genomic analysis reveals disruption of striatal neuronal development and therapeutic targets in human huntington’s disease neural stem cells. Stem Cell Reports. 2015;5(6):1023–1038.
  • Balsevich G, Hausl AS, Meyer CW, et al. Stress-responsive FKBP51 regulates AKT2-AS160 signaling and metabolic function. Nat Commun. 2017;8(1):1725.
  • Heikkinen T, Lehtimaki K, Vartiainen N, et al. Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington’s disease. PLoS One. 2012;7(12):e50717.
  • Menalled LB, Kudwa AE, Miller S, et al. Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS One. 2012;7(12):e49838.
  • Langfelder P, Cantle JP, Chatzopoulou D, et al. Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat Neurosci. 2016;19(4):623–633.
  • Mangiarini L, Sathasivam K, Seller M, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87(3):493–506.
  • Cummings DM, Alaghband Y, Hickey MA, et al. A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington’s disease. J Neurophysiol. 2012;107(2):677–691.
  • Menalled L, El-Khodor BF, Patry M, et al. Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis. 2009;35107(3):319–36677-691.
  • Menalled LB, Sison JD, Dragatsis I, et al. Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol. 2003;465(1):11–26.
  • Neto JL, Lee JM, Afridi A, et al. Genetic contributors to intergenerational CAG repeat instability in huntington’s disease knock-in mice. Genetics. 2017;205(2):503–516.
  • Franich NR, Basso M, Andre EA, et al. Striatal mutant huntingtin protein levels decline with age in homozygous huntington’s disease knock-in mouse models. J Huntington’s Dis. 2018;7(2):137–150.
  • Reindl W, Baldo B, Schulz J, et al. Meso scale discovery-based assays for the detection of aggregated huntingtin. PLoS One. 2019;14(3):e0213521.
  • An MC, O’Brien RN, Zhang N, et al. Polyglutamine Disease Modeling: epitope Based Screen for Homologous Recombination using CRISPR/Cas9 System. PLoS currents. 2014;6. doi:https://doi.org/10.1371/currents.hd.0242d2e7ad72225efa72f6964589369a.
  • An MC, Zhang N, Scott G, et al. Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell. 2012;11(2):253–263.
  • Al-Ramahi I, Lu B, Di Paola S, et al. High-throughput functional analysis distinguishes pathogenic, nonpathogenic, and compensatory transcriptional changes in neurodegeneration. Cell Syst. 2018;7(1):28–40 e4.
  • Blair LJ, Baker JD, Sabbagh JJ, et al. The emerging role of peptidyl-prolyl isomerase chaperones in tau oligomerization, amyloid processing, and Alzheimer’s disease. J Neurochem. 2015;133(1):1–13.
  • Jain A, Lamark T, Sjottem E, et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010;285(29):22576–22591.
  • Panek J, Kolar M, Vohradsky J, et al. An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5ʹ 5′ UTRs and its implications for eukaryotic gene translation regulation. Nucleic Acids Res. 2013;41(16):7625–7634.
  • Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282(33):24131–24145.
  • Menzies FM, Rubinsztein DC. Broadening the therapeutic scope for rapamycin treatment. Autophagy. 2010;6(2):286–287.
  • Quarles E, Basisty N, Chiao YA, et al. Rapamycin persistently improves cardiac function in aged, male and female mice, even following cessation of treatment. Aging Cell. 2020;19(2):e13086.
  • Sarkar S, Krishna G, Imarisio S, et al. A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin. Hum Mol Genet. 2008;17(2):170–178.
  • Zhang N, Li B, Al-Ramahi I, et al. Inhibition of lipid signaling enzyme diacylglycerol kinase epsilon attenuates mutant huntingtin toxicity. J Biol Chem. 2012;28717(25):13170–13178.
  • Giustiniani J, Sineus M, Sardin E, et al. Decrease of the immunophilin FKBP52 accumulation in human brains of Alzheimer’s disease and FTDP-17. J Alzheimers Dis. 2012;29:471–483.
  • Avramut M, Achim CL. Immunophilins and their ligands: insights into survival and growth of human neurons. Physiol Behav. 2002;77(4–5):463–468.
  • Caraveo G, Soste M, Cappelleti V, et al. FKBP12 contributes to alpha-synuclein toxicity by regulating the calcineurin-dependent phosphoproteome. Proc Natl Acad Sci U S A. 2017;114(52):E11313–e22.
  • Caron NS, Desmond CR, Xia J, et al. Polyglutamine domain flexibility mediates the proximity between flanking sequences in huntingtin. Proc Natl Acad Sci U S A. 2013;110(36):14610–14615.
  • Neveklovska M, Clabough EB, Steffan JS, et al. Deletion of the huntingtin proline-rich region does not significantly affect normal huntingtin function in mice. J Huntington’s Dis. 2012;1(1):71–87.
  • Sun CS, Lee CC, Li YN, et al. Conformational switch of polyglutamine-expanded huntingtin into benign aggregates leads to neuroprotective effect. Sci Rep. 2015;5(1):14992.
  • Martin DD, Ladha S, Ehrnhoefer DE, et al. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci. 2015;38(1):26–35.
  • Guo F, Liu X, Cai H, et al. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol. 2018;28(1):3–13.
  • Sarkar S, Davies JE, Huang Z, et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem. 2007;282(8):5641–5652.
  • Sarkar S, Ravikumar B, Floto RA, et al. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ. 2009;16(1):46–56.
  • Leavitt BR, Kordasiewicz HB, Schobel SA. Huntingtin-lowering therapies for huntington disease: a review of the evidence of potential benefits and risks. JAMA Neurol. 2020;77(6):764.
  • Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36(6):585–595.
  • Li Z, Wang C, Wang Z, et al. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature. 2019;575(7781):203–209.
  • Martinez-Vicente M, Talloczy Z, Wong E, et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s Huntington’s disease. Nat Neurosci. 2010;13(5):567–576.
  • Steffan JS. Does Huntingtin play a role in selective macroautophagy? Cell Cycle. 2010;9(17):3401–3413.
  • Gassen NC, Hartmann J, Zschocke J, et al. Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans. PLoS Med. 2014;11(11):e1001755.
  • Cheung-Flynn J, Prapapanich V, Cox MB, et al. Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol Endocrinol. 2005;1936(6):1654–66585-595.
  • Kl R, An MC, Zhang N, et al. Genomic Analysis Reveals Disruption of Striatal Neuronal Development and Therapeutic Targets in Human Huntington’s Disease Neural Stem Cells. Stem Cell Reports. 2015;5(6):1023–1038.
  • Kemp PJ, Rushton DJ, Yarova PL, et al. Improving and accelerating the differentiation and functional maturation of human stem cell-derived neurons: role of extracellular calcium and GABA. J Physiol. 2016;594(22):6583–6594.