6,617
Views
9
CrossRef citations to date
0
Altmetric
Review

The exploitation of host autophagy and ubiquitin machinery by Mycobacterium tuberculosis in shaping immune responses and host defense during infection

, , , , , , , , , & show all
Pages 3-23 | Received 05 Aug 2021, Accepted 17 Dec 2021, Published online: 09 Jan 2022

References

  • Mizushima N, Levine B, Longo DL. Autophagy in human diseases. N Engl J Med. 2020 Oct 15;383(16):1564–1576. 10.1056/NEJMra2022774
  • Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27(1):107–132.
  • Kimmey JM, Stallings CL. Bacterial Pathogens versus Autophagy: implications for Therapeutic Interventions. Trends Mol Med. 2016 Dec;22(12):1060–1076.
  • Swatek KN, Komander D. Ubiquitin modifications. Cell Res. 2016 Apr;26(4):399–422.
  • Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67(1):425–479.
  • Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol. 2006;22(1):159–180.
  • Lin YH, Machner MP. Exploitation of the host cell ubiquitin machinery by microbial effector proteins. J Cell Sci. 2017 Jun 15; 130(12):1985–1996. 10.1242/jcs.188482
  • Liu J, Qian C, Cao X. Post-Translational Modification Control of Innate Immunity. Immunity. 2016 Jul 19;45(1):15–30. 10.1016/j.immuni.2016.06.020
  • Ribet D, Cossart P. Ubiquitin, SUMO, and NEDD8: key Targets of Bacterial Pathogens. Trends Cell Biol. 2018 Nov;28(11):926–940.
  • Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol. 2017 Dec;14(12):963–975.
  • Jo EK. Autophagy as an innate defense against mycobacteria. Pathog Dis. 2013 Mar;67(2):108–118.
  • Chai Q, Wang L, Liu CH, et al. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol. 2020 Sep;17(9):901–913. DOI:10.1038/s41423-020-0502-z.
  • Deretic V, Delgado M, Vergne I, et al. Autophagy in immunity against mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy. Curr Top Microbiol Immunol. 2009;335:169–188.
  • Vergne I, Chua J, Deretic V. Mycobacterium tuberculosis phagosome maturation arrest: selective targeting of PI3P-dependent membrane trafficking. Traffic. 2003 Sep;4(9):600–606.
  • Jamwal SV, Mehrotra P, Singh A, et al. Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism. Sci Rep. 2016 Mar 16;6(1):23089. 10.1038/srep23089
  • Simeone R, Bobard A, Lippmann J, et al. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog. 2012 Feb;8(2):e1002507. DOI:10.1371/journal.ppat.1002507.
  • Chen RH, Chen YH, Huang TY. Ubiquitin-mediated regulation of autophagy. J Biomed Sci. 2019 Oct 21;26(1):80. 10.1186/s12929-019-0569-y
  • Li J, Chai QY, Liu CH. The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions. Cell Mol Immunol. 2016 Sep;13(5):560–576.
  • Bussi C, Gutierrez MG. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiol Rev. 2019 Jul 1;43(4):341–361. 10.1093/femsre/fuz006
  • Lerner TR, Borel S, Greenwood DJ, et al. Mycobacterium tuberculosis replicates within necrotic human macrophages. J Cell Biol. 2017 Mar 6;216(3):583–594. 10.1083/jcb.201603040
  • Romagnoli A, Etna MP, Giacomini E, et al. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy. 2012 Sep;8(9):1357–1370. DOI:10.4161/auto.20881.
  • Kumar A, Rani M, Ehtesham NZ, et al. Commentary: modification of host responses by Mycobacteria. Front Immunol. 2017;8:466.
  • Kumar A, Alam A, Rani M, et al. Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol. 2017 Dec;307(8):481–489. DOI:10.1016/j.ijmm.2017.09.016.
  • Kumar A, Alam A, Grover S, et al. Peptidyl-prolyl isomerase-B is involved in Mycobacterium tuberculosis biofilm formation and a generic target for drug repurposing-based intervention. NPJ Biofilms Microbiomes. 2019;5(1):3. DOI:10.1038/s41522-018-0075-0.
  • Singh Y, Kohli S, Sowpati DT, et al. Gene cooption in mycobacteria and search for virulence attributes: comparative proteomic analyses of Mycobacterium tuberculosis, Mycobacterium indicus pranii and other mycobacteria. Int J Med Microbiol. 2014 Jul;304(5–6):742–748. DOI:10.1016/j.ijmm.2014.05.006.
  • Saini V, Raghuvanshi S, Khurana JP, et al. Massive gene acquisitions in Mycobacterium indicus pranii provide a perspective on mycobacterial evolution. Nucleic Acids Res. 2012 Nov;40(21):10832–10850. DOI:10.1093/nar/gks793.
  • Kohli S, Singh Y, Sharma K, et al. Comparative genomic and proteomic analyses of PE/PPE multigene family of Mycobacterium tuberculosis H(3)(7)Rv and H(3)(7)Ra reveal novel and interesting differences with implications in virulence. Nucleic Acids Res. 2012 Aug;40(15):7113–7122. DOI:10.1093/nar/gks465.
  • Kumar A, Alam A, Tripathi D, et al. Protein adaptations in extremophiles: an insight into extremophilic connection of mycobacterial proteome. Semin Cell Dev Biol. 2018 Dec;84:147–157.
  • Grover S, Gupta P, Kahlon PS, et al. Analyses of methyltransferases across the pathogenicity spectrum of different mycobacterial species point to an extremophile connection. Mol Biosyst. 2016 May 26;12(5):1615–1625. 10.1039/C5MB00810G
  • Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. 2004 Nov 29;1695(1–3):55–72. 10.1016/j.bbamcr.2004.09.019
  • Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81(1):203–229.
  • Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. ‘protein modifications: beyond the usual suspects’ review series. EMBO Rep. 2008 Jun;9(6):536–542.
  • Vucic D, Dixit VM, Wertz IE. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol. 2011 Jun 23;12(7):439–452. 10.1038/nrm3143
  • Corn JE, Vucic D. Ubiquitin in inflammation: the right linkage makes all the difference. Nat Struct Mol Biol. 2014 Apr;21(4):297–300.
  • Haakonsen DL, Rape M. Branching out: improved signaling by heterotypic ubiquitin chains. Trends Cell Biol. 2019 Sep;29(9):704–716.
  • D’Andrea A, Pellman D. Deubiquitinating enzymes: a new class of biological regulators. Crit Rev Biochem Mol Biol. 1998;33(5):337–352.
  • Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009 Aug;10(8):550–563.
  • Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem. 2012;81(1):291–322.
  • Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol. 2009 Oct;10(10):659–671.
  • Dieckmann T, Withers-Ward ES, Jarosinski MA, et al. Structure of a human DNA repair protein UBA domain that interacts with HIV-1 Vpr. Nat Struct Biol. 1998 Dec;5(12):1042–1047. DOI:10.1038/4220.
  • Mueller TD, Feigon J. Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions. J Mol Biol. 2002 Jun 21;319(5):1243–1255. 10.1016/S0022-2836(02)00302-9
  • Hicke L, Schubert HL, Hill CP. Ubiquitin-binding domains. Nat Rev Mol Cell Biol. 2005 Aug;6(8):610–621.
  • Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78(1):399–434.
  • Smit JJ, Sixma TK. RBR E3-ligases at work. EMBO Rep. 2014 Feb;15(2):142–154.
  • Weber J, Polo S, Maspero E. HECT E3 ligases: a tale with multiple facets. Front Physiol. 2019;10:370.
  • George AJ, Hoffiz YC, Charles AJ, et al. A comprehensive atlas of E3 ubiquitin ligase mutations in neurological disorders. Front Genet. 2018;9:29.
  • Galdeano C. Drugging the undruggable: targeting challenging E3 ligases for personalized medicine. Future Med Chem. 2017 Mar;9(4):347–350.
  • Berndsen CE, Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 2014 Apr;21(4):301–307.
  • Ohi MD, Vander Kooi CW, Rosenberg JA, et al. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol. 2003 Apr;10(4):250–255. DOI:10.1038/nsb906.
  • Vander Kooi CW, Ohi MD, Rosenberg JA, et al. The Prp19 U-box crystal structure suggests a common dimeric architecture for a class of oligomeric E3 ubiquitin ligases. Biochemistry. 2006 Jan 10;45(1):121–130. 10.1021/bi051787e
  • Verdecia MA, Joazeiro CA, Wells NJ, et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell. 2003 Jan;11(1):249–259. DOI:10.1016/S1097-2765(02)00774-8.
  • Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol. 2009 Jun;10(6):398–409.
  • Spratt DE, Walden H, Shaw GS. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem J. 2014 Mar 15;458(3):421–437. 10.1042/BJ20140006
  • Deretic V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev. 2011 Mar;240(1):92–104.
  • Selleck EM, Orchard RC, Lassen KG, et al. A Noncanonical Autophagy Pathway Restricts Toxoplasma gondii Growth in a Strain-Specific Manner in IFN-gamma-Activated Human Cells. mBio. 2015 Sep 8;6(5):e01157–15. 10.1128/mBio.01157-15
  • Joubert PE, Meiffren G, Gregoire IP, et al. Autophagy induction by the pathogen receptor CD46. Cell Host Microbe. 2009 Oct 22;6(4):354–366. 10.1016/j.chom.2009.09.006
  • Thurston TL, Ryzhakov G, Bloor S, et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol. 2009 Nov;10(11):1215–1221. DOI:10.1038/ni.1800.
  • Case ED, Chong A, Wehrly TD, et al. The Francisella O-antigen mediates survival in the macrophage cytosol via autophagy avoidance. Cell Microbiol. 2014 Jun;16(6):862–877. DOI:10.1111/cmi.12246.
  • Ogawa M, Yoshimori T, Suzuki T, et al. Escape of intracellular Shigella from autophagy. Science. 2005 Feb 4;307(5710):727–731. 10.1126/science.1106036
  • Jo EK, Yuk JM, Shin DM, et al. Roles of autophagy in elimination of intracellular bacterial pathogens. Front Immunol. 2013;4:97.
  • Heath RJ, Goel G, Baxt LA, et al. RNF166 Determines Recruitment of Adaptor Proteins during Antibacterial Autophagy. Cell Rep. 2016 Nov 22;17(9):2183–2194. 10.1016/j.celrep.2016.11.005
  • Shahnazari S, Yen WL, Birmingham CL, et al. A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe. 2010 Aug 19;8(2):137–146. 10.1016/j.chom.2010.07.002
  • Thurston TL, Wandel MP, Von Muhlinen N, et al. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature. 2012 Jan 15;482(7385):414–418. 10.1038/nature10744
  • Jia J, Abudu YP, Claude-Taupin A, et al. Galectins control MTOR and AMPK in response to lysosomal damage to induce autophagy. Autophagy. 2019 Jan;15(1):169–171. DOI:10.1080/15548627.2018.1505155.
  • Fiskin E, Bionda T, Dikic I, et al. Global Analysis of Host and Bacterial Ubiquitinome in Response to Salmonella Typhimurium Infection. Mol Cell. 2016 Jun 16;62(6):967–981. 10.1016/j.molcel.2016.04.015
  • Katsuragi Y, Ichimura Y, Komatsu M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 2015 Dec;282(24):4672–4678.
  • Khaminets A, Behl C, Dikic I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol. 2016 Jan;26(1):6–16.
  • Vainshtein A, Grumati P. Selective Autophagy by Close Encounters of the Ubiquitin Kind. Cells. 2020 Oct 24;9(11):2349. 10.3390/cells9112349
  • Budzik JM, Swaney DL, Jimenez-Morales D, et al. Dynamic post-translational modification profiling of Mycobacterium tuberculosis-infected primary macrophages. Elife. 2020 Jan 17;9. 10.7554/eLife.51461
  • Sharma V, Verma S, Seranova E, et al. Selective Autophagy and Xenophagy in Infection and Disease. Front Cell Dev Biol. 2018;6:147.
  • Verlhac P, Gregoire IP, Azocar O, et al. Autophagy receptor NDP52 regulates pathogen-containing autophagosome maturation. Cell Host Microbe. 2015 Apr 8;17(4):515–525. 10.1016/j.chom.2015.02.008
  • Judith D, Mostowy S, Bourai M, et al. Species-specific impact of the autophagy machinery on Chikungunya virus infection. EMBO Rep. 2013 Jun;14(6):534–544. DOI:10.1038/embor.2013.51.
  • Deng Q, Wang Y, Zhang Y, et al. Pseudomonas aeruginosa Triggers Macrophage Autophagy To Escape Intracellular Killing by Activation of the NLRP3 Inflammasome. Infect Immun. 2016 Jan;84(1):56–66. DOI:10.1128/IAI.00945-15.
  • Kuang E, Okumura CY, Sheffy-Levin S, et al. Regulation of ATG4B stability by RNF5 limits basal levels of autophagy and influences susceptibility to bacterial infection. PLoS Genet. 2012;8(10):e1003007. DOI:10.1371/journal.pgen.1003007.
  • Kuang E, Qi J, Ronai Z. Emerging roles of E3 ubiquitin ligases in autophagy. Trends Biochem Sci. 2013 Sep;38(9):453–460.
  • Li F, Zeng J, Gao Y, et al. G9a Inhibition Induces Autophagic Cell Death via AMPK/mTOR Pathway in Bladder Transitional Cell Carcinoma. PLoS One. 2015;10(9):e0138390. DOI:10.1371/journal.pone.0138390.
  • McEwan DG, Dikic I. Cullins keep autophagy under control. Dev Cell. 2014 Dec 22;31(6):675–676. 10.1016/j.devcel.2014.12.010
  • Manzanillo PS, Ayres JS, Watson RO, et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature. 2013 Sep 26;501(7468):512–516. 10.1038/nature12566
  • Noad J, Von der Malsburg A, Pathe C, et al. LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-kappaB. Nat Microbiol. 2017 May 8;2(7):17063. 10.1038/nmicrobiol.2017.63
  • van Wijk SJL, Fricke F, Herhaus L, et al. Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-kappaB and restricts bacterial proliferation. Nat Microbiol. 2017 May 8;2(7):17066. 10.1038/nmicrobiol.2017.66
  • Franco LH, Nair VR, Scharn CR, et al. The ubiquitin ligase smurf1 functions in selective autophagy of mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe. 2017 Jan 11;21(1):59–72. 10.1016/j.chom.2016.11.002
  • Siqueira MDS, Ribeiro RM, Travassos LH. Autophagy and its interaction with intracellular bacterial pathogens. Front Immunol. 2018;9:935.
  • Deng L, Meng T, Chen L, et al. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020 Feb 29;5(1):11. 10.1038/s41392-020-0107-0
  • Bielskiene K, Bagdoniene L, Mozuraitiene J, et al. E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma. Medicina (Kaunas). 2015;51(1):1–9. DOI:10.1016/j.medici.2015.01.007.
  • Dove KK, Klevit RE. RING-between-RING E3 ligases: emerging themes amid the variations. J Mol Biol. 2017 Nov 10;429(22):3363–3375. 10.1016/j.jmb.2017.08.008
  • Gladkova C, Maslen SL, Skehel JM, et al. Mechanism of parkin activation by PINK1. Nature. 2018 Jul;559(7714):410–414. DOI:10.1038/s41586-018-0224-x.
  • Sauve V, Sung G, Soya N, et al. Mechanism of parkin activation by phosphorylation. Nat Struct Mol Biol. 2018 Jul;25(7):623–630. DOI:10.1038/s41594-018-0088-7.
  • Johnson BN, Berger AK, Cortese GP, et al. The ubiquitin E3 ligase parkin regulates the proapoptotic function of bax. Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6283–6288. 10.1073/pnas.1113248109
  • de Leseleuc L, Orlova M, Cobat A, et al. PARK2 mediates interleukin 6 and monocyte chemoattractant protein 1 production by human macrophages. PLoS Negl Trop Dis. 2013;7(1):e2015. DOI:10.1371/journal.pntd.0002015.
  • Klein C, Westenberger A. Genetics of parkinson’s disease. Cold Spring Harb Perspect Med. 2012 Jan;2(1):a008888.
  • Marin I, Ferrus A. Comparative genomics of the RBR family, including the Parkinson’s disease-related gene parkin and the genes of the ariadne subfamily. Mol Biol Evol. 2002 Dec;19(12):2039–2050.
  • Ingham RJ, Gish G, Pawson T. The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene. 2004 Mar 15;23(11):1972–1984. 10.1038/sj.onc.1207436
  • Shearwin-Whyatt L, Dalton HE, Foot N, et al. Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins. Bioessays. 2006 Jun;28(6):617–628. DOI:10.1002/bies.20422.
  • Macias MJ, Wiesner S, Sudol M. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett. 2002 Feb 20;513(1):30–37. 10.1016/S0014-5793(01)03290-2
  • Wei X, Wang X, Zhan J, et al. Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation. J Cell Biol. 2017 May 1;216(5):1455–1471. 10.1083/jcb.201609073
  • Cao Y, Zhang L. A Smurf1 tale: function and regulation of an ubiquitin ligase in multiple cellular networks. Cell Mol Life Sci. 2013 Jul;70(13):2305–2317.
  • Orvedahl A, Sumpter R Jr., Xiao G, et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature. 2011 Dec 1;480(7375):113–117. 10.1038/nature10546
  • Yuan C, Qi J, Zhao X, et al. Smurf1 protein negatively regulates interferon-gamma signaling through promoting STAT1 protein ubiquitination and degradation. J Biol Chem. 2012 May 18;287(21):17006–17015. 10.1074/jbc.M112.341198
  • Kimmey JM, Huynh JP, Weiss LA, et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature. 2015 Dec 24;528(7583):565–569. 10.1038/nature16451
  • Rogov VV, Stolz A, Ravichandran AC, et al. Structural and functional analysis of the GABARAP interaction motif (GIM). EMBO Rep. 2017 Aug;18(8):1382–1396. DOI:10.15252/embr.201643587.
  • Abdrakhmanov A, Gogvadze V, Zhivotovsky B. To eat or to die: deciphering selective forms of autophagy. Trends Biochem Sci. 2020 Apr;45(4):347–364.
  • Shaid S, Brandts CH, Serve H, et al. Ubiquitination and selective autophagy. Cell Death Differ. 2013 Jan;20(1):21–30. DOI:10.1038/cdd.2012.72.
  • Huang J, Brumell JH. Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol. 2014 Feb;12(2):101–114.
  • Whang MI, Tavares RM, Benjamin DI, et al. The ubiquitin binding protein TAX1BP1 mediates autophagasome induction and the metabolic transition of activated t cells. Immunity. 2017 Mar 21;46(3):405–420. 10.1016/j.immuni.2017.02.018
  • Fu T, Liu J, Wang Y, et al. Mechanistic insights into the interactions of NAP1 with the SKICH domains of NDP52 and TAX1BP1. Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11651–E11660. 10.1073/pnas.1811421115
  • Ceregido MA, Spinola Amilibia M, Buts L, et al. The structure of TAX1BP1 UBZ1+2 provides insight into target specificity and adaptability. J Mol Biol. 2014 Feb 6;426(3):674–690. 10.1016/j.jmb.2013.11.006
  • Tumbarello DA, Manna PT, Allen M, et al. The autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of salmonella typhimurium by autophagy. PLoS Pathog. 2015 Oct;11(10):e1005174. DOI:10.1371/journal.ppat.1005174.
  • Chai Q, Wang X, Qiang L, et al. A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun. 2019 Apr 29;10(1):1973. 10.1038/s41467-019-09955-8
  • Lin C, Nozawa T, Minowa-Nozawa A, Toh H, Aikawa C, Nakagawa I. LAMTOR2/LAMTOR1 complex is required for TAX1BP1-mediated xenophagy. Cell Microbiol. 2019;21(4): e12981. 10.1111/cmi.12981
  • Furuya N, Kakuta S, Sumiyoshi K, Ando M, Nonaka R, Suzuki A, Kazuno S, Saiki S, Hattori N. NDP52 interacts with mitochondrial RNA poly(A) polymerase to promote mitophagy. EMBO Rep. 2018;19(12). 10.15252/embr.201846363
  • Verlhac P, Viret C, Faure M. Dual function of CALCOCO2/NDP52 during xenophagy. Autophagy. 2015;11(6): 965–966. 10.1080/15548627.2015.1046672
  • Ryan T A, Tumbarello D A. (). Optineurin: A Coordinator of Membrane-Associated Cargo Trafficking and Autophagy. Front Immunol. 2018;9:1024. 10.3389/fimmu.2018.01024
  • Shen W, Li H, Chen G, Chern Y, Tu P. Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism. Autophagy. 2015;11(4), 685–700. 10.4161/auto.36098
  • Wild P et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science. 2011;333(6039): 228–233. 10.1126/science.1205405
  • Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T. 2005p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603–614. 10.1083/jcb.200507002
  • Tsuchiya M, Ogawa H, Koujin T, Mori C, Osakada H, Kobayashi S, Hiraoka Y, Haraguchi T. p62/SQSTM1 promotes rapid ubiquitin conjugation to target proteins after endosome rupture during xenophagy. FEBS Open Bio. 2018;8(3): 470–480. 10.1002/2211-5463.12385
  • Yamada T, Dawson T M, Yanagawa T, Iijima M, Sesaki H. SQSTM1/p62 promotes mitochondrial ubiquitination independently of PINK1 and PRKN/parkin in mitophagy. Autophagy. 2019;15(11): 2012–2018. 10.1080/15548627.2019.1643185
  • Hafren A, Hofius D. NBR1-mediated antiviral xenophagy in plant immunity. Autophagy. 2017;13(11): 2000–2001.
  • Barnett T C, Liebl D, Seymour LM et al. The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe. 2013;14(6): 675–682. 10.1016/j.chom.2013.11.003
  • Xie X, Li F, Wang Y, et al. Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2. Autophagy. 2015;11(10):1775–1789. DOI:10.1080/15548627.2015.1082025.
  • Watson RO, Manzanillo PS, Cox JS. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell. 2012 Aug 17;150(4):803–815. 10.1016/j.cell.2012.06.040
  • Mostowy S, Sancho-Shimizu V, Hamon MA, et al. p62 and NDP52 proteins target intracytosolic shigella and listeria to different autophagy pathways. J Biol Chem. 2011 Jul 29;286(30):26987–26995. 10.1074/jbc.M111.223610
  • Richter B, Sliter DA, Herhaus L, et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4039–4044. 10.1073/pnas.1523926113
  • Heo JM, Ordureau A, Paulo JA, et al. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell. 2015 Oct 1;60(1):7–20. 10.1016/j.molcel.2015.08.016
  • Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015 Aug 20;524(7565):309–314. 10.1038/nature14893
  • Rahighi S, Ikeda F, Kawasaki M, et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell. 2009 Mar 20;136(6):1098–1109. 10.1016/j.cell.2009.03.007
  • Clark K, Nanda S, Cohen P. Molecular control of the NEMO family of ubiquitin-binding proteins. Nat Rev Mol Cell Biol. 2013 Oct;14(10):673–685.
  • Morton S, Hesson L, Peggie M, et al. Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma. FEBS Lett. 2008 Mar 19;582(6):997–1002. 10.1016/j.febslet.2008.02.047
  • Li F, Xie X, Wang Y, et al. Structural insights into the interaction and disease mechanism of neurodegenerative disease-associated optineurin and TBK1 proteins. Nat Commun. 2016 Sep 13;7(1):12708. 10.1038/ncomms12708
  • Li F, Xu D, Wang Y, et al. Structural insights into the ubiquitin recognition by OPTN (optineurin) and its regulation by TBK1-mediated phosphorylation. Autophagy. 2018;14(1):66–79. DOI:10.1080/15548627.2017.1391970.
  • Puri M, La Pietra L, Mraheil MA, et al. Listeriolysin O regulates the expression of optineurin, an autophagy adaptor that inhibits the growth of listeria monocytogenes. Toxins (Basel). 2017 Sep 5;9(9):273. 10.3390/toxins9090273
  • Munoz-Sanchez S, van der Vaart M, Meijer AH. Autophagy and Lc3-associated phagocytosis in zebrafish models of bacterial infections. Cells. 2020 Oct 29;9(11):2372. 10.3390/cells9112372
  • Zhang R, Varela M, Vallentgoed W, et al. The selective autophagy receptors optineurin and p62 are both required for zebrafish host resistance to mycobacterial infection. PLoS Pathog. 2019 Feb;15(2):e1007329. DOI:10.1371/journal.ppat.1007329.
  • Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007 Aug 17;282(33):24131–24145. 10.1074/jbc.M702824200
  • Komatsu M, Waguri S, Koike M, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007 Dec 14;131(6):1149–1163. 10.1016/j.cell.2007.10.035
  • Itakura E, Mizushima N. Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol. [2011 Jan 10];192(1):17–27. p62 DOI:10.1083/jcb.201009067.
  • Kim BW, Kwon DH, Song HK. Structure biology of selective autophagy receptors. BMB Rep. 2016 Feb;49(2):73–80.
  • Clausen TH, Lamark T, Isakson P, et al. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy. 2010 Apr;6(3):330–344. DOI:10.4161/auto.6.3.11226.
  • Filimonenko M, Isakson P, Finley KD, et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell. 2010 Apr 23;38(2):265–279. 10.1016/j.molcel.2010.04.007
  • Zhang Y, Mun SR, Linares JF, et al. ZZ-dependent regulation of p62/SQSTM1 in autophagy. Nat Commun. 2018 Oct 22;9(1):4373. 10.1038/s41467-018-06878-8
  • Cha-Molstad H, Yu JE, Feng Z, et al. p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nat Commun. 2017 Jul 24;8(1):102. 10.1038/s41467-017-00085-7
  • Orvedahl A, MacPherson S, Sumpter R Jr., et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe. 2010 Feb 18;7(2):115–127. 10.1016/j.chom.2010.01.007
  • Yoshikawa Y, Ogawa M, Hain T, et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol. 2009 Oct;11(10):1233–1240. DOI:10.1038/ncb1967.
  • Zheng YT, Shahnazari S, Brech A, et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol. 2009 Nov 1;183(9):5909–5916. 10.4049/jimmunol.0900441
  • Pilli M, Arko-Mensah J, Ponpuak M, et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity. 2012 Aug 24;37(2):223–234. 10.1016/j.immuni.2012.04.015
  • Lee Y, Weihl CC. Regulation of SQSTM1/p62 via UBA domain ubiquitination and its role in disease. Autophagy. 2017 Sep 2;13(9):1615–1616. 10.1080/15548627.2017.1339845
  • Fusco C, Micale L, Egorov M, et al. The E3-ubiquitin ligase TRIM50 interacts with HDAC6 and p62, and promotes the sequestration and clearance of ubiquitinated proteins into the aggresome. PLoS One. 2012;7(7):e40440. DOI:10.1371/journal.pone.0040440.
  • Komatsu M, Kurokawa H, Waguri S, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol. 2010 Mar;12(3):213–223. DOI:10.1038/ncb2021.
  • Lau A, Wang XJ, Zhao F, et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol. 2010 Jul;30(13):3275–3285. DOI:10.1128/MCB.00248-10.
  • Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell. 2009 Jun 12;137(6):1001–1004. 10.1016/j.cell.2009.05.023
  • Lee Y, Chou TF, Pittman SK, et al. Keap1/Cullin3 Modulates p62/SQSTM1 activity via UBA domain ubiquitination. Cell Rep. 2017 Apr 4;19(1):188–202. 10.1016/j.celrep.2017.03.030
  • Ponpuak M, Davis AS, Roberts EA, et al. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity. 2010 Mar 26;32(3):329–341. 10.1016/j.immuni.2010.02.009
  • Seto S, Tsujimura K, Horii T, et al. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells. PLoS One. 2013;8(12):e86017. DOI:10.1371/journal.pone.0086017.
  • Prabakaran T, Bodda C, Krapp C, et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J. 2018 Apr 13;37(8). 10.15252/embj.201797858.
  • Lange S, Xiang F, Yakovenko A, et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science. 2005 Jun 10;308(5728):1599–1603. 10.1126/science.1110463
  • Whitehouse CA, Waters S, Marchbank K, et al. Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity. Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12913–12918. 10.1073/pnas.0913058107
  • Lamark T, Perander M, Outzen H, et al. Interaction codes within the family of mammalian phox and bem1p domain-containing proteins. J Biol Chem. 2003 Sep 5;278(36):34568–34581. 10.1074/jbc.M303221200
  • Rogov V, Dotsch V, Johansen T, et al. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell. 2014 Jan 23;53(2):167–178. 10.1016/j.molcel.2013.12.014
  • Kirkin V, Lamark T, Sou YS, et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell. 2009 Feb 27;33(4):505–516. 10.1016/j.molcel.2009.01.020
  • Svenning S, Lamark T, Krause K, et al. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy. 2011 Sep;7(9):993–1010. DOI:10.4161/auto.7.9.16389.
  • Deosaran E, Larsen KB, Hua R, et al. NBR1 acts as an autophagy receptor for peroxisomes. J Cell Sci. 2013 Feb 15;126(Pt 4):939–952. 10.1242/jcs.114819
  • Guirado E, Schlesinger LS. Modeling the mycobacterium tuberculosis granuloma - the critical battlefield in host immunity and disease. Front Immunol. 2013;4:98.
  • Xu G, Wang J, Gao GF, et al. Insights into battles between Mycobacterium tuberculosis and macrophages. Protein Cell. 2014 Oct;5(10):728–736. DOI:10.1007/s13238-014-0077-5.
  • Keane J, Remold HG, Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol. 2000 Feb 15;164(4):2016–2020.
  • Welin A, Eklund D, Stendahl O, et al. Human macrophages infected with a high burden of ESAT-6-expressing M. tuberculosis undergo caspase-1- and cathepsin B-independent necrosis. PLoS One. 2011;6(5):e20302. DOI:10.1371/journal.pone.0020302.
  • Ahmad J, Farhana A, Pancsa R, et al. Contrasting function of structured N-terminal and unstructured C-terminal segments of Mycobacterium tuberculosis PPE37 protein. mBio. 2018 Jan 23;9(1). 10.1128/mBio.01712-17.
  • Grover S, Sharma T, Singh Y, et al. The PGRS domain of Mycobacterium tuberculosis PE_PGRS protein Rv0297 is involved in endoplasmic reticulum stress-mediated apoptosis through toll-like receptor 4. mBio. 2018 Jun 19;9(3). 10.1128/mBio.01017-18.
  • Tundup S, Mohareer K, Hasnain SE. Mycobacterium tuberculosis PE25/PPE41 protein complex induces necrosis in macrophages: role in virulence and disease reactivation? FEBS Open Bio. 2014;4(1):822–828.
  • Arora SK, Alam A, Naqvi N, et al. Immunodominant mycobacterium tuberculosis protein Rv1507A elicits Th1 response and modulates host macrophage effector functions. Front Immunol. 2020;11:1199.
  • Ahmad J, Khubaib M, Sheikh JA, et al. Disorder-to-order transition in PE-PPE proteins of Mycobacterium tuberculosis augments the pro-pathogen immune response. FEBS Open Bio. 2020 Jan;10(1):70–85. DOI:10.1002/2211-5463.12749.
  • Khubaib M, Sheikh JA, Pandey S, et al. Mycobacterium tuberculosis Co-operonic PE32/PPE65 proteins alter host immune responses by hampering Th1 Response. Front Microbiol. 2016;7:719.
  • Blundell TL, Gupta MN, Hasnain SE. Intrinsic disorder in proteins: relevance to protein assemblies, drug design and host-pathogen interactions. Prog Biophys Mol Biol. 2020 Jul 3;156:34–42.10.1016/j.pbiomolbio.2020.06.004
  • Gupta MN, Alam A, Hasnain SE. Protein promiscuity in drug discovery, drug-repurposing and antibiotic resistance. Biochimie. 2020 Aug;175:50–57.
  • Dev A, Iyer S, Razani B, et al. NF-kappaB and innate immunity. Curr Top Microbiol Immunol. 2011;349:115–143.
  • Chen J, Xie C, Tian L, et al. Participation of the p38 pathway in drosophila host defense against pathogenic bacteria and fungi. Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20774–20779. 10.1073/pnas.1009223107
  • Wang J, Ge P, Lei Z, et al. Mycobacterium tuberculosis protein kinase G acts as an unusual ubiquitinating enzyme to impair host immunity. EMBO Rep. 2021 Jun 4;22(6):e52175. 10.15252/embr.202052175
  • Wang J, Ge P, Qiang L, et al. The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation. Nat Commun. 2017 Aug 15;8(1):244. 10.1038/s41467-017-00279-z
  • Puri RV, Reddy PV, Tyagi AK. Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in Guinea pig tissues. PLoS One. 2013;8(7):e70514.
  • Maculins T, Fiskin E, Bhogaraju S, et al. Bacteria-host relationship: ubiquitin ligases as weapons of invasion. Cell Res. 2016 Apr;26(4):499–510. DOI:10.1038/cr.2016.30.
  • Ahmed N, Dobrindt U, Hacker J, et al. Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention. Nat Rev Microbiol. 2008 May;6(5):387–394. DOI:10.1038/nrmicro1889.
  • Shariq M, Quadir N, Sheikh JA, et al. Post translational modifications in tuberculosis: ubiquitination paradox. Autophagy. 2020 Nov 15;17(3):814–817. 10.1080/15548627.2020.1850009
  • Wang L, Wu J, Li J, et al. Host-mediated ubiquitination of a mycobacterial protein suppresses immunity. Nature. 2020 Jan;577(7792):682–688. DOI:10.1038/s41586-019-1915-7.
  • Dhiman R, Raje M, Majumdar S. Differential expression of NF-kappaB in mycobacteria infected THP-1 affects apoptosis. Biochim Biophys Acta. 2007 Apr;1770(4):649–658.
  • Cho JE, Park S, Cho SN, et al. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) are involved in Mycobacterium tuberculosis-induced expression of Leukotactin-1. BMB Rep. 2012 Oct;45(10):583–588. DOI:10.5483/BMBRep.2012.45.10.120.
  • Wang J, Li BX, Ge PP, et al. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system. Nat Immunol. 2015 Mar;16(3):237–245. DOI:10.1038/ni.3096.
  • Wang L, Liu Z, Wang J, et al. Oxidization of TGFbeta-activated kinase by MPT53 is required for immunity to Mycobacterium tuberculosis. Nat Microbiol. 2019 Aug;4(8):1378–1388. DOI:10.1038/s41564-019-0436-3.
  • Sakowski ET, Koster S, Portal Celhay C, et al. Ubiquilin 1 promotes IFN-gamma-induced xenophagy of Mycobacterium tuberculosis. PLoS Pathog. 2015 Jul;11(7):e1005076. DOI:10.1371/journal.ppat.1005076.
  • Cowley S, Ko M, Pick N, et al. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol. 2004 Jun;52(6):1691–1702. DOI:10.1111/j.1365-2958.2004.04085.x.
  • Lisa MN, Gil M, Andre-Leroux G, et al. Molecular basis of the activity and the regulation of the eukaryotic-like S/T protein kinase PknG from Mycobacterium tuberculosis. Structure. 2015 Jun 2;23(6):1039–1048. 10.1016/j.str.2015.04.001
  • Walburger A, Koul A, Ferrari G, et al. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science. 2004 Jun 18;304(5678):1800–1804. 10.1126/science.1099384
  • Ehtram A, Shariq M, Ali S, et al. Teleological cooption of Mycobacterium tuberculosis PE/PPE proteins as porins: role in molecular immigration and emigration. Int J Med Microbiol. 2021 Apr;311(3):151495. DOI:10.1016/j.ijmm.2021.151495.
  • Akhter Y, Ehebauer MT, Mukhopadhyay S, et al. The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: perhaps more? Biochimie. 2012 Jan;94(1):110–116. DOI:10.1016/j.biochi.2011.09.026.
  • Sharma N, Shariq M, Quadir N, et al. Mycobacterium tuberculosis protein PE6 (Rv0335c), a novel TLR4 agonist, evokes an inflammatory response and modulates the cell death pathways in macrophages to enhance intracellular survival. Front Immunol. 2021;12:696491.
  • Strong EJ, Jurcic Smith KL, Saini NK, et al. Identification of autophagy-inhibiting factors of mycobacterium tuberculosis by high-throughput loss-of-function screening. Infect Immun. 2020 Nov 16;88(12). 10.1128/IAI.00269-20.
  • Saini NK, Baena A, Ng TW, et al. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nat Microbiol. 2016 Aug 15;1(9):16133. 10.1038/nmicrobiol.2016.133
  • Strong EJ, Ng TW, Porcelli SA, et al. Mycobacterium tuberculosis PE_PGRS20 and PE_PGRS47 proteins inhibit autophagy by interaction with Rab1A. mSphere. 2021 Aug 25;6(4):e0054921. 10.1128/mSphere.00549-21
  • Deng W, Long Q, Zeng J, et al. Mycobacterium tuberculosis PE_PGRS41 Enhances the Intracellular Survival of M. smegmatis within Macrophages via blocking innate immunity and inhibition of host defense. Sci Rep. 2017 Apr 25;7(1):46716. 10.1038/srep46716
  • Hu D, Wu J, Wang W, et al. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7. Biochem Biophys Res Commun. 2015 May 29;461(2):401–407. 10.1016/j.bbrc.2015.04.051
  • Shariq M, Quadir N, Sharma N, et al. Mycobacterium tuberculosis RipA dampens TLR4-mediated host protective response using a multi-pronged approach involving autophagy, apoptosis, metabolic repurposing, and immune modulation. Front Immunol. 2021;12:636644.
  • Meng QL, Liu F, Yang XY, et al. Identification of latent tuberculosis infection-related microRNAs in human U937 macrophages expressing Mycobacterium tuberculosis hsp16.3. BMC Microbiol. 2014 Feb 12;14(1):37. 10.1186/1471-2180-14-37
  • Yang L, Zhang C, Zhao Y, et al. Effects of Mycobacterium tuberculosis mutant strain hsp16.3 gene on murine raw 264.7 macrophage autophagy. DNA Cell Biol. 2018 Jan;37(1):7–14. DOI:10.1089/dna.2016.3599.
  • Zheng Q, Li Z, Zhou S, et al. Heparin-binding hemagglutinin of mycobacterium tuberculosis is an inhibitor of autophagy. Front Cell Infect Microbiol. 2017;7:33.
  • Gengenbacher M, Nieuwenhuizen N, Vogelzang A, et al. Deletion of nuoG from the vaccine candidate mycobacterium bovis bcg deltaurec::hly improves protection against tuberculosis. mBio. 2016 May 24;7(3). 10.1128/mBio.00679-16.
  • Shin DM, Jeon BY, Lee HM, et al. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog. 2010 Dec 16;6(12):e1001230. 10.1371/journal.ppat.1001230
  • Garg R, Borbora SM, Bansia H, et al. Mycobacterium tuberculosis calcium pump ctpf modulates the autophagosome in an mtor-dependent manner. Front Cell Infect Microbiol. 2020;10:461.
  • Mohanty S, Jagannathan L, Ganguli G, et al. A mycobacterial phosphoribosyltransferase promotes bacillary survival by inhibiting oxidative stress and autophagy pathways in macrophages and zebrafish. J Biol Chem. 2015 May 22;290(21):13321–13343. 10.1074/jbc.M114.598482
  • Huang D, Bao L. Mycobacterium tuberculosis EspB protein suppresses interferon-gamma-induced autophagy in murine macrophages. J Microbiol Immunol Infect. 2016 Dec;49(6):859–865.
  • Yabaji SM, Dhamija E, Mishra AK, et al. ESAT-6 regulates autophagous response through SOD-2 and as a result induces intracellular survival of Mycobacterium bovis BCG. Biochim Biophys Acta Proteins Proteom. 2020 Oct;1868(10):140470. DOI:10.1016/j.bbapap.2020.140470.
  • Padhi A, Pattnaik K, Biswas M, et al. Mycobacterium tuberculosis LprE suppresses TLR2-dependent cathelicidin and autophagy expression to enhance bacterial survival in macrophages. J Immunol. 2019 Nov 15;203(10):2665–2678. 10.4049/jimmunol.1801301
  • Ge P, Lei Z, Yu Y, et al. M. tuberculosis PknG manipulates host autophagy flux to promote pathogen intracellular survival. Autophagy. 2021 Jun 7;1–19. DOI:10.1080/15548627.2021.1938912.
  • Jacomin AC, Samavedam S, Promponas V, et al. iLIR database: a web resource for LIR motif-containing proteins in eukaryotes. Autophagy. 2016 Oct 2;12(10):1945–1953. 10.1080/15548627.2016.1207016
  • Birgisdottir AB, Lamark T, Johansen T. The LIR motif - crucial for selective autophagy. J Cell Sci. 2013 Aug 1;126(Pt 15):3237–3247. 10.1242/jcs.126128
  • Deretic V. Autophagy in tuberculosis. Cold Spring Harb Perspect Med. 2014 Aug 28;4(11):a018481. 10.1101/cshperspect.a018481
  • Gutierrez MG, Master SS, Singh SB, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004 Dec 17;119(6):753–766. 10.1016/j.cell.2004.11.038
  • Ye X, Zhou XJ, Zhang H. Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Front Immunol. 2018;9:2334.
  • Csizmadia T, Low P. The Role of Deubiquitinating Enzymes in the Various Forms of Autophagy. Int J Mol Sci. 2020 Jun 12;21(12):4196. 10.3390/ijms21124196
  • Grumati P, Dikic I. Ubiquitin signaling and autophagy. J Biol Chem. 2018 Apr 13;293(15):5404–5413. 10.1074/jbc.TM117.000117
  • Jacomin AC, Taillebourg E, Fauvarque MO. Deubiquitinating enzymes related to autophagy: new therapeutic opportunities? Cells. 2018 Aug 19;7(8):112. 10.3390/cells7080112
  • Jia R, Bonifacino JS. Negative regulation of autophagy by UBA6-BIRC6-mediated ubiquitination of LC3. Elife. 2019 Nov 6;8. 10.7554/eLife.50034
  • Nibe Y, Oshima S, Kobayashi M, et al. Novel polyubiquitin imaging system, PolyUb-FC, reveals that K33-linked polyubiquitin is recruited by SQSTM1/p62. Autophagy. 2018;14(2):347–358. DOI:10.1080/15548627.2017.1407889.
  • Chakaya JM, Marais B, Du Cros P, et al. Programmatic versus personalised approaches to managing the global epidemic of multidrug-resistant tuberculosis. Lancet Respir Med. 2020 Apr;8(4):334–335. DOI:10.1016/S2213-2600(20)30104-1.
  • Parsa K, Hasnain SE. Proteomics of multidrug resistant Mycobacterium tuberculosis clinical isolates: a peep show on mechanism of drug resistance & perhaps more. Indian J Med Res. 2015 Jan;141(1):8–9.
  • Tiberi S, Du Plessis N, Walzl G, et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis. 2018 Jul;18(7):e183–e198. DOI:10.1016/S1473-3099(18)30110-5.
  • Sheikh JA, Ehtesham NZ, Hasnain SE. Revisiting BCG to control tuberculosis: mucosal delivery and delipidation? Lancet Infect Dis. 2020 Mar;20(3):272–273.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.