5,670
Views
2
CrossRef citations to date
0
Altmetric
Review

Multifaceted roles of TAX1BP1 in autophagy

, , , &
Pages 44-53 | Received 29 Nov 2021, Accepted 21 Apr 2022, Published online: 09 May 2022

References

  • Gachon F, Peleraux A, Thebault S, et al. CREB-2, a cellular CRE-dependent transcription repressor, functions in association with Tax as an activator of the human T-cell leukemia virus type 1 promoter. J Virol. 1998 Oct;72(10):8332–8337.
  • De Valck D, Jin DY, Heyninck K, et al. The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene. [1999 Jul 22];18(29):4182–4190.
  • Ling L, Goeddel DV. T6BP, a TRAF6-interacting protein involved in IL-1 signaling. Proc Natl Acad Sci U S A. [2000 Aug 15];97(17):9567–9572.
  • DA T, PT M, Allen M, et al. The autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of salmonella typhimurium by autophagy. PLoS Pathog. 2015 [2015 October 9];11(10):e1005174.
  • Nagaraja GM, Kandpal RP. Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins. Biochem Biophys Res Commun. [2004 Jan 16];313(3):654–665.
  • Verstrepen L, Verhelst K, Carpentier I, et al. TAX1BP1, a ubiquitin-binding adaptor protein in innate immunity and beyond. Trends Biochem Sci. 2011 Jul;36(7):347–354.
  • Sarraf SA, Shah HV, Kanfer G, et al. Loss of TAX1BP1-directed autophagy results in protein aggregate accumulation in the brain. Mol Cell. [2020 Dec 3];80(5):779–795 e10.
  • MA C, Spínola AM, Buts L, et al. The structure of TAX1BP1 UBZ1+2 provides insight into target specificity and adaptability. J Mol Biol. 2014 [2014 February 1];426(3):674–690.
  • Iha H, Peloponese JM, Verstrepen L, et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-kappaB activation. EMBO J. [2008 Feb 20];27(4):629–641.
  • Shembade N, Harhaj NS, Liebl DJ, et al. Essential role for TAX1BP1 in the termination of TNF-alpha-, IL-1- and LPS-mediated NF-kappaB and JNK signaling. EMBO J. [2007 Sep 5];26(17):3910–3922.
  • Shembade N, NS H, Parvatiyar K, et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol. 2008 [2008 March 1];9(3):254–262.
  • Shembade N, Parvatiyar K, Harhaj NS, et al. The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling. EMBO J. [2009 Mar 4];28(5):513–522.
  • Shembade N, Pujari R, Harhaj NS, et al. The kinase IKKalpha inhibits activation of the transcription factor NF-kappaB by phosphorylating the regulatory molecule TAX1BP1. Nat Immunol. [2011 Jul 17];12(9):834–843.
  • Parvatiyar K, Barber GN, Harhaj EW. TAX1BP1 and A20 inhibit antiviral signaling by targeting TBK1-IKKi kinases. J Biol Chem. [2010 May 14];285(20):14999–15009.
  • Choi YB, Shembade N, Parvatiyar K, et al. TAX1BP1 restrains virus-induced apoptosis by facilitating itch-mediated degradation of the mitochondrial adaptor MAVS. Mol Cell Biol. [2017 Jan 1];37(1). 10.1128/MCB.00422-16.
  • Newman AC, Scholefield CL, Kemp AJ, et al. TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-kappaB signalling. PLoS One. 2012;7(11):e50672.
  • Tj M, AH L, Simonsen A. Autophagosome biogenesis: from membrane growth to closure. J Cell Biol. 2020 [2020 June 1];219(6):e202002085.
  • YG Z, Zhang H. Autophagosome maturation: an epic journey from the ER to lysosomes. J Cell Biol. 2019 [2019 March 4];218(3):757–770.
  • TE R, Vaccari T, Lindmo K, et al. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol. 2007 [2007 October 1];17(20):1817–1825.
  • Filimonenko M, Stuffers S, Raiborg C, et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol. 2007 [2007 November 5];179(3):485–500.
  • Deretic V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev. 2011 [2011 March 1];240(1):92–104.
  • Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013 [2013 October 1];13(10):722–737.
  • Birgisdottir AB, Lamark T, Johansen T. The LIR motif - crucial for selective autophagy. J Cell Sci. [2013 Aug 1];126(Pt 15):3237–3247.
  • Chien Y, Kim S, Bumeister R, et al. RalB GTPase-mediated activation of the IκB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell. 2006 [2006 October 1];127(1):157–170.
  • DA B, Tamayo P, JS B, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009 [2009 November 1];462(7269):108–112.
  • T-L C, Gioia R, J-s G, et al. Are the IKKs and IKK-related kinases TBK1 and IKK-ɛ similarly activated? Trends Biochem Sci. 2008 [2008 April 1];33(4):171–180.
  • Jl P. NF-kappa B activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 1999 [1999 December 1];18(23):6694–6704.
  • Thurston TLM, Ryzhakov G, Bloor S, et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol. 2009 [2009 November 1];10(11):1215–1221.
  • Wild P, Farhan H, Mcewan DG, et al. Phosphorylation of the autophagy receptor optineurin restricts salmonella growth. Science. 2011 [2011 July 8];333(6039):228–233.
  • Muhlinen VN, Akutsu M, Ravenhill JB, et al. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol Cell. 2012 [2012 November 1];48(3):329–342.
  • Birmingham CL, Brumell JH. Autophagy recognizes intracellular Salmonella enterica serovar typhimurium in damaged vacuoles.Autophagy. 2006 [2006 July 22];2(3):156–158.
  • Zheng YT, Shahnazari S, Brech A, et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol. 2009 [2009 November 1];183(9):5909–5916.
  • Bell SL, Lopez KL, Cox JS, et al. Galectin-8 senses phagosomal damage and recruits selective autophagy adapter TAX1BP1 to control mycobacterium tuberculosis infection in macrophages. mBio. [2021 Aug 31];12(4):e0187120.
  • Budzik JM, Swaney DL, Jimenez-Morales D, et al. Dynamic post-translational modification profiling of Mycobacterium tuberculosis-infected primary macrophages. eLife. 2020 [2020 January 17];9. 10.7554/eLife.51461.
  • Petkova D, Verlhac P, Rozières A, et al. Distinct contributions of autophagy receptors in measles virus replication. Viruses. 2017 [2017 May 22];9(5):123.
  • Descamps D, Peres de Oliveira A, Gonnin L, et al. Depletion of TAX1BP1 amplifies innate immune responses during respiratory syncytial virus infection. J Virol. [2021 Aug 25];95(22). JVI0091221. 10.1128/JVI.00912-21.
  • Chen Z, Wang C, Feng X, et al. Comprehensive analysis of the host-virus interactome of SARS-CoV-2. BioRxiv; 2021.
  • Laurent EMN, Sofianatos Y, Komarova A, et al. Global BioID-based SARS-CoV-2 proteins proximal interactome unveils novel ties between viral polypeptides and host factors involved in multiple COVID19-associated mechanisms. BioRxiv; 2020.
  • Stukalov A, Girault V, Grass V, et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature. 2021 [2021 June 10];594(7862):246–252.
  • Wang X, Naidu SR, Sverdrup F, et al. Tax1BP1 interacts with papillomavirus E2 and regulates E2-Dependent transcription and stability. J Virol. 2009 [2009 March 1];83(5):2274–2284.
  • Poirson J, Biquand E, Straub M-L, et al. Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitin-proteasome system. FEBS J. 2017 [2017 October 1];284(19):3171–3201.
  • Ahmad L, Mostowy S, Sancho-Shimizu V. Autophagy-virus interplay: from cell biology to human disease. Front Cell Dev Biol. 2018;6:155.
  • Barmada SJ, Skibinski G, Korb E, et al. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci. 2010 [2010 January 13];30(2):639–649.
  • Barmada SJ, Serio A, Arjun A, et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol. 2014 [2014 August 1];10(8):677–685.
  • Iwata A, Christianson JC, Bucci M, et al. Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Nat Acad Sci. 2005 [2005 October 13];102(37):13135–13140.
  • Ravikumar B. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy.Hum Mol Genet. 2002 [2002 May 1];11(9):1107–1117.
  • Moreno-Garcia A, Kun A, Calero O, et al. An overview of the role of lipofuscin in age-related neurodegeneration. Front Neurosci. 2018;12:464.
  • Hou F, Sun L, Zheng H, et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell. 2011 [2011 August 1];146(3):448–461.
  • Liu B, Gao C. Regulation of MAVS activation through post-translational modifications. Curr Opin Immunol. 2018 [2018 February 1];50:75–81.
  • Huang Y, Liu H, Li S, et al. MAVS-MKK7-JNK2 defines a novel apoptotic signaling pathway during viral infection. PLoS Pathog. 2014 Mar;10(3):e1004020.
  • Yang Q, Liu -T-T, Lin H, et al. TRIM32-TAX1BP1-dependent selective autophagic degradation of TRIF negatively regulates TLR3/4-mediated innate immune responses. PLoS Pathog. 2017 [2017 September 12];13(9):e1006600.
  • Vogel SN. TLRs: differential adapter utilization by toll-like receptors mediates TLR-specific patterns of gene expression.Mol interv. 2003 [2003 December 1];3(8):466–477.
  • Visintin A, Latz E, Monks BG, et al. Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to toll-like receptor-4 aggregation and signal transduction. J Biol Chem. 2003 [2003 November 1];278(48):48313–48320.
  • Gay NJ, Symmons MF, Gangloff M, et al. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol. 2014 [2014 August 1];14(8):546–558.
  • Lim J, Park H, Heisler J, et al. Autophagy regulates inflammatory programmed cell death via turnover of RHIM-domain proteins. eLife. 2019 [2019 July 9];8. 10.7554/eLife.44452
  • Vanden Berghe T, Hassannia B, Vandenabeele P. An outline of necrosome triggers.Cell Mol Life Sci. 2016 [2016 June 1];73(11–12):2137–2152.
  • Orozco S, Yatim N, Werner MR, et al. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death Differ. 2014 [2014 October 1];21(10):1511–1521.
  • Cho Y, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009 [2009 June 1];137(6):1112–1123.
  • Li J, Mcquade T, Siemer B, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 2012 [2012 July 1];150(2):339–350.
  • Samie M, Lim J, Verschueren E, et al. Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nat Immunol. 2018 Mar;19(3):246–254.
  • Nishimura T, Tooze SA. Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discov. 2020 [2020 December 1];6(1). 10.1038/s41421-020-0161-3.
  • Ablasser A, Hur S. Regulation of cGAS- and RLR-mediated immunity to nucleic acids.Nat Immunol. 2020 [2020 January 1];21(1):17–29.
  • Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol. 2021 [2021 March 1];18(3):539–555.
  • Guan K, Zheng Z, Song T, et al. MAVS regulates apoptotic cell death by decreasing K48-linked ubiquitination of voltage-dependent anion channel 1. Mol Cell Biol. 2013 Aug;33(16):3137–3149.
  • Lei Y, Moore CB, Liesman RM, et al. MAVS-mediated apoptosis and its inhibition by viral proteins. PLoS ONE. 2009 [2009 March 7];4(5):e5466.
  • Weinberg ES, Sena AL, Navdeep CS. Mitochondria in the regulation of innate and adaptive immunity.Immunity. 2015 [2015 March 1];42(3):406–417.
  • Sliter DA, Martinez J, Hao L, et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature. 2018 Sep;561(7722):258–262.
  • Baumann K. Autophagy: mitophagy receptors unravelled. Nat Rev Mol Cell Biol. 2015 Oct;16(10):580.
  • Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. [2015 Aug 20];524(7565):309–314.
  • Eapen VV, Swarup S, Hoyer MJ, et al. Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy. eLife. 2021 [2021 September 29];10. 10.7554/eLife.72328.
  • Chang C, Shi X, Jensen LE, et al. Reconstitution ofcargo-induced LC3 lipidation inmammalian selective autophagy. Sci Adv. 2021 [Apr 23];7(17). 10.1126/sciadv.abg4922.
  • Goodwin JM, Dowdle WE, Dejesus R, et al. Autophagy-independent lysosomal targeting regulated by ULK1/2-FIP200 and ATG9. Cell Rep. 2017 [2017 September 1];20(10):2341–2356.
  • Ohnstad AE, Delgado JM, North BJ, et al. Receptor‐mediated clustering of FIP200 bypasses the role of LC3 lipidation in autophagy. EMBO J. 2020 [2020 December 15];39(24). 10.15252/embj.2020104948.
  • Tumbarello DA, Kendrick-Jones J, Buss F. Myosin VI and its cargo adaptors - linking endocytosis and autophagy.J Cell Sci. 2013 [2013 June 15];126(12):2561–2570.
  • Tumbarello DA, Waxse BJ, Arden SD, et al. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol. 2012 [2012 October 1];14(10):1024–1035.
  • Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion.Cell. 2007 [2007 July 1];130(1):165–178.
  • Fujita N, Hayashi-Nishino M, Fukumoto H, et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell. 2008 [2008 November 1];19(11):4651–4659.
  • Manil-Segalen M, Lefebvre C, Jenzer C, et al. The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. Dev Cell. [2014 Jan 13];28(1):43–55.
  • Sou Y-S, Waguri S, Iwata J-I, et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell. 2008 [2008 November 1];19(11):4762–4775.
  • Nishida Y, Arakawa S, Fujitani K, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature. 2009 [2009 October 1];461(7264):654–658.
  • Honda S, Arakawa S, Nishida Y, et al. Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat Commun. 2014 [2014 September 1];5(1). 10.1038/ncomms5004.
  • Nguyen TN, Padman BS, Usher J, et al. Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J Cell Biol. [2016 Dec 19];215(6):857–874.
  • Turco E, Savova A, Gere F, et al. Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation. Nat Commun. 2021 [2021 December 1];12(1). 10.1038/s41467-021-25572-w.
  • Fader CM, Colombo MI. Autophagy and multivesicular bodies: two closely related partners.Cell Death Differ. 2009 [2009 January 1];16(1):70–78.
  • Hu S, Wang Y, Gong Y, et al. Mechanistic insights into recognitions of ubiquitin and myosin VI by autophagy receptor TAX1BP1. J Mol Biol. 2018 [2018 September 1];430(18):3283–3296.
  • Zhang C, Shang G, Gui X, et al. Structural basis of STING binding with and phosphorylation by TBK1. Nature. 2019 [2019 March 1];567(7748):394–398.
  • Newton K, Dixit VM. Signaling in innate immunity and inflammation.Cold Spring Harb Perspect Biol. 2012 [2012 March 1];4(3):a006049–a006049.
  • Zhang X, Bai X-C, Chen ZJ. Structures and mechanisms in the cGAS-STING innate immunity pathway.Immunity. 2020 [2020 July 1];53(1):43–53.
  • Shembade N, Harhaj E. A20 inhibition of NFkappaB and inflammation: targeting E2:E3 ubiquitin enzyme complexes. Cell Cycle. [2010 Jul 1];9(13):2481–2482.
  • Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science. [2010 Feb 26];327(5969):1135–1139.
  • Ravenhill BJ, Boyle KB, Von Muhlinen N, et al. The cargo receptor NDP52 initiates selective autophagy by recruiting the ULK complex to cytosol-invading bacteria. Mol Cell. 2019 [2019 April 1];74(2):320–329.e6.
  • Zhou Z, Liu J, Fu T, et al. Phosphorylation regulates the binding of autophagy receptors to FIP200 Claw domain for selective autophagy initiation. Nat Commun. 2021 [2021 December 1];12(1):1570.
  • Shi X, Chang C, Yokom AL, et al. The autophagy adaptor NDP52 and the FIP200 coiled-coil allosterically activate ULK1 complex membrane recruitment. eLife. 2020 [2020 August 10];9. 10.7554/eLife.59099.
  • Bansal M, Moharir SC, Sailasree SP, et al. Optineurin promotes autophagosome formation by recruiting the autophagy-related Atg12-5-16L1 complex to phagophores containing the Wipi2 protein. J Biol Chem. 2018 [2018 January 1];293(1):132–147.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.