835
Views
1
CrossRef citations to date
0
Altmetric
Review

G-quadruplex ligands as potent regulators of lysosomes

, , , , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1901-1915 | Received 25 Aug 2022, Accepted 05 Dec 2022, Published online: 05 Feb 2023

References

  • Phan AT. Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS J. 2010;277:1107–1117.
  • Biffi G, Tannahill D, McCafferty J, et al. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem. 2013;5:182–186.
  • Salgado GF, Cazenave C, Kerkour A, et al. G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy. Chem Sci. 2015;6:3314–3320.
  • Ribeyre C, Lopes J, Boulé J-B, et al. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 2009;5:e1000475.
  • Varshney D, Spiegel J, Zyner K, et al. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol. 2020;21:459–474.
  • Armas P, Calcaterra NB. G-quadruplex in animal development: contribution to gene expression and genomic heterogeneity. Mech Dev. 2018;154:64–72.
  • Tabor N, Ngwa C, Mitteaux J, et al. Differential responses of neurons, astrocytes, and microglia to G-quadruplex stabilization. Aging (Albany NY). 2021;13:15917–15941.
  • Lago S, Nadai M, Cernilogar FM, et al. Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat Commun. 2021;12:3885.
  • Carvalho J, Mergny J-L, Salgado GF, et al. Friend or Foe: the role of the g-quartet in anticancer strategies. Trends Mol Med. 2020;26:848–861.
  • Perrone R, Nadai M, Frasson I, et al. A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter. J Med Chem. 2013;56:6521–6530.
  • Amrane S, Kerkour A, Bedrat A, et al. Topology of a DNA G-quadruplex structure formed in the HIV-1 promoter: a potential target for anti-HIV drug development. J Am Chem Soc. 2014;136:5249–5252.
  • Abiri A, Lavigne M, Rezaei M, Nikzad S, Zare P, Mergny J-L, Rahimi H-R. Unlocking. G-Quadruplexes as antiviral targets. Pharmacol Rev. 2021;73:897–923.
  • Puig Lombardi E, Londoño-Vallejo A. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 2020;48:1–15.
  • Bedrat A, Lacroix L, Mergny J-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759.
  • Brázda V, Bartas M, Bowater RP. Evolution of diverse strategies for promoter regulation. Trends Genet. 2021;37:730–744.
  • Bohálová N, Mergny J-L BV. Novel G-quadruplex prone sequences emerge in the complete assembly of the human X chromosome. Biochimie. 2021;191:87–90.
  • Piazza A, Adrian M, Samazan F, et al. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO J. 2015;34:1718–1734.
  • Biffi G, Tannahill D, Miller J, et al. Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues. PLoS One. 2014;9:e102711.
  • Guo JU, DP B. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science. 2016;353:aaf5371.
  • Wang W, Zhou J, Shi J, et al. T-cell leukemia virus type 1 Tax-deregulated autophagy pathway and c-FLIP expression contribute to resistance against death receptor-mediated apoptosis. J Virol. 2014;88:2786–2798.
  • Yett A, Lin LY, Beseiso D, et al. N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J Porphyr Phthalocyanines. 2019;23:1195–1215.
  • Brassart B, Gomez D, De Cian A, et al. A new steroid derivative stabilizes g-quadruplexes and induces telomere uncapping in human tumor cells. Mol Pharmacol. 2007;72:631–640.
  • Zuffo M, Guédin A, Leriche E-D, et al. More is not always better: finding the right trade-off between affinity and selectivity of a G-quadruplex ligand. Nucleic Acids Res. 2018;46:e115.
  • Luo Y, Granzhan A, Verga D, et al. A fluorescence melting competition assay for studying G4 structures in vitro. Biopolymers. 2021;112:e23415.
  • Hamon F, Largy E, Guédin-Beaurepaire A, et al. An acyclic oligoheteroaryle that discriminates strongly between diverse G-quadruplex topologies. Angew Chem Int Ed Engl. 2011;50:8745–8749.
  • Sun D, Thompson B, Cathers BE, et al. Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem. 1997;40:2113–2116.
  • De Cian A, Cristofari G, Reichenbach P, et al. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc Natl Acad Sci U S A. 2007;104:17347–17352.
  • Granotier C, Pennarun G, Riou L, et al. Preferential binding of a G-quadruplex ligand to human chromosome ends. Nucleic Acids Res. 2005;33:4182–4190.
  • Drygin D, Siddiqui-Jain A, O’Brien S, et al. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res. 2009;69:7653–7661.
  • Drygin D, Lin A, Bliesath J, et al. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res. 2011;71:1418–1430.
  • Ferreira R, Schneekloth JS, Panov KI, et al. Targeting the RNA Polymerase I Transcription for Cancer Therapy Comes of Age. Cells. 2020;9:E266.
  • Zimmer J, Tacconi EMC, Folio C, et al. Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds. Mol Cell. 2016;61:449–460.
  • De Magis A, Manzo SG, Russo M, et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proceedings of the National Academy of Sciences, USA. 2019; 116:816–825.
  • Miglietta G, Russo M, Duardo RC, et al. G-quadruplex binders as cytostatic modulators of innate immune genes in cancer cells. Nucleic Acids Res. 2021;49:6673–6686.
  • Brázda V, Kolomazník J, Lýsek J, et al. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics. 2019;35:3493–3495.
  • Saftig P, Puertollano R. How lysosomes sense, integrate, and cope with stress. Trends Biochem Sci. 2021;46:97–112.
  • Lawrence RE, Zoncu R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol. 2019;21:133–142.
  • Inpanathan S, Botelho RJ. The lysosome signaling platform: adapting with the times. Front Cell Dev Biol. 2019;7:113.
  • Ben-Sahra I, Manning BD. mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol. 2017;45:72–82.
  • Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21:183–203.
  • Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20:460–473.
  • Galluzzi L, Baehrecke EH, Ballabio A, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36:1811–1836.
  • Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176:11–42.
  • Kroemer G, Mariño G, Levine B. Autophagy and the Integrated Stress Response. Mol Cell. 2010;40:280–293.
  • White E, Lattime EC, Guo JY. Autophagy Regulates Stress Responses, Metabolism, and Anticancer Immunity. Trends Cancer. 2021;7:778–789.
  • Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366:818–822.
  • Faruk MO, Ichimura Y, Komatsu M. Selective autophagy. Cancer Sci. 2021;112:3972–3978.
  • Johansen T, Selective Autophagy: LT. ATG8 family proteins, LIR motifs and cargo receptors. J Mol Biol. 2020;432:80–103.
  • Napolitano G, Ballabio A. TFEB at a glance. J Cell Sci. 2016;129:2475–2481.
  • Raben N, Puertollano R. TFEB and TFE3: linking lysosomes to cellular adaptation to stress. Annu Rev Cell Dev Biol. 2016;32:255–278.
  • Slade L, Pulinilkunnil T. The MiTF/TFE family of transcription factors: master regulators of organelle signaling, metabolism, and stress adaptation. Mol Cancer Res. 2017;15:1637–1643.
  • La Spina M, Contreras PS, Rissone A, et al. MiT/TFE family of transcription factors: an evolutionary perspective. Front Cell Dev Biol. 2020;8:609683.
  • Kuiper RP, Schepens M, Thijssen J, et al. Regulation of the MiTF/TFE bHLH-LZ transcription factors through restricted spatial expression and alternative splicing of functional domains. Nucleic Acids Res. 2004;32:2315–2322.
  • Pérez-Roca L, Prada-Dacasa P, Segú-Vergés C, et al. Glucocerebrosidase regulators SCARB2 and TFEB are up-regulated in Lewy body disease brain. Neurosci Lett. 2019;706:164–168.
  • Settembre C, Fraldi A, Medina DL, et al. Signals for the lysosome: a control center for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14:283–296.
  • Martina JA, Chen Y, Gucek M, et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8:903–914.
  • Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31:1095–1108.
  • Settembre C, Medina DLTFEB. and the CLEAR network. Methods Cell Biol. 2015;126:45–62.
  • Feng Y, He D, Yao Z, et al. The machinery of macroautophagy. Cell Res. 2014;24:24–41.
  • Aits S, Jäättelä M. Lysosomal cell death at a glance. J Cell Sci. 2013;126:1905–1912.
  • Wang F, Gómez-Sintes R, Boya P. Lysosomal membrane permeabilization and cell death. Traffic. 2018;19:918–931.
  • Stahl-Meyer J, Stahl-Meyer K, Jäättelä M. Control of mitosis, inflammation, and cell motility by limited leakage of lysosomes. Curr Opin Cell Biol. 2021;71:29–37.
  • Papadopoulos C, Kravic B, Meyer H. Repair or Lysophagy: dealing with Damaged Lysosomes. J Mol Biol. 2020;432:231–239.
  • Kang -C-C, Huang W-C, Kouh C-W, et al. Chemical principles for the design of a novel fluorescent probe with high cancer-targeting selectivity and sensitivity. Integr Biol (Camb). 2013;5:1217–1228.
  • Tse T-Y, Chang C-C, Lin J-J, Chang T-C. A Fluorescent Anti-Cancer. Agent, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide, stains G-Quadruplexes in cells and inhibits tumor growth. Curr Top Med Chem. 2015;15:1964–1970.
  • Zhitomirsky B, Assaraf YG. Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat. 2016;24:23–33.
  • Yu Q, Liu Y, Xu L, et al. polypyridyl complexes: cellular uptake, cell image and apoptosis of HeLa cancer cells induced by double targets. Eur J Med Chem. 2014;82:82–95.
  • Beauvarlet J, Nath Das R, Alvarez-Valadez K, et al. Triarylpyridine compounds and chloroquine act in concert to trigger lysosomal membrane permeabilization and cell death in cancer cells. Cancers (Basel). 2020;12:E1621.
  • Falabella M, Fernandez RJ, Johnson FB, et al. Potential roles for G-Quadruplexes in Mitochondria. Curr Med Chem. 2019;26:2918–2932.
  • Falabella M, Kolesar JE, Wallace C, et al. G-quadruplex dynamics contribute to regulation of mitochondrial gene expression. Sci Rep. 2019;9:5605.
  • Butler TJ, Estep KN, Sommers JA, et al. Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in vitro. Hum Mol Genet. 2020;29:1292–1309.
  • Dahal S, Siddiqua H, Katapadi VK, et al. Characterization of G4 DNA formation in mitochondrial DNA and their potential role in mitochondrial genome instability. FEBS J. 2022;289:163–182.
  • Li C-P, Huang J-H, Chang A-C, et al. G-quadruplex ligand 3,3’-diethyloxadicarbocyanine iodide induces mitochondrion-mediated apoptosis but not decrease of telomerase activity in nasopharyngeal carcinoma NPC-TW01 cells. Pharm Res. 2004;21:93–100.
  • Huang W-C, Tseng T-Y, Chen Y-T, et al. Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents. Nucleic Acids Res. 2015;43:10102–10113.
  • Guo X, Yang D, Sun R, et al. A cyanine dye supramolecular FRET switch driven by G-quadruplex to monitor mitophagy. Dyes Pigm. 2021;192:109429.
  • She M-T, Yang J-W, Zheng B-X, et al. Design mitochondria-specific fluorescent turn-on probes targeting G-quadruplexes for live cell imaging and mitophagy monitoring study. Chem Eng J. 2022;446:136947.
  • Tseng T-Y, Wang Z-F, Chien C-H, et al. In-cell optical imaging of exogenous G-quadruplex DNA by fluorogenic ligands. Nucleic Acids Res. 2013;41:10605–10618.
  • Tseng T-Y, Wang C-L, Huang W-C, et al. Folding and unfolding of exogenous G-Rich Oligonucleotides in live cells by fluorescence lifetime imaging microscopy of o-BMVC fluorescent probe. Molecules. 2021;27:140.
  • Chang T, Qi C, Meng J, et al. General cell-binding activity of intramolecular G-quadruplexes with parallel structure. PLoS One. 2013;8:e62348.
  • Yoon S, Rossi JJ. Aptamers: uptake mechanisms and intracellular applications. Adv Drug Deliv Rev. 2018;134:22–35.
  • Sardiello M, Palmieri M. di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, et al. Sci. 2009;325:473–477.
  • Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332:1429–1433.
  • Beauvarlet J, Bensadoun P, Darbo E, et al. Modulation of the ATM/autophagy pathway by a G-quadruplex ligand tips the balance between senescence and apoptosis in cancer cells. Nucleic Acids Res. 2019;47:2739–2756.
  • Miglietta G, Marinello J, Russo M, et al. Ligands stimulating antitumour immunity as the next G-quadruplex challenge. Mol Cancer. 2022;21:180.
  • Moruno-Manchon JF, Lejault P, Wang Y, et al. Small-molecule G-quadruplex stabilizers reveal a novel pathway of autophagy regulation in neurons. Elife. 2020;9:e52283.
  • Brozzi A, Urbanelli L, Germain PL, et al. hLGDB: a database of human lysosomal genes and their regulation. Database (Oxford). 2013;2013:bat024.
  • Palmieri M, Impey S, Kang H et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 2011;20:3852–3866.
  • Zhou W-J, Deng R, Zhang X-Y, et al. G-quadruplex ligand SYUIQ-5 induces autophagy by telomere damage and TRF2 delocalization in cancer cells. Mol Cancer Ther. 2009;8:3203–3213.
  • Zhou W-J, Deng R, Feng G-K, et al. [A G-quadruplex ligand SYUIQ-5 induces autophagy by inhibiting the Akt-FOXO3a pathway in nasopharyngeal cancer cells]. Ai Zheng. 2009;28:1049–1053.
  • Orlotti NI, Cimino-Reale G, Borghini E, et al. Autophagy acts as a safeguard mechanism against G-quadruplex ligand-mediated DNA damage. Autophagy. 2012;8:1185–1196.
  • Beauvarlet J, Mergny J-L Djavaheri-Mergny, M. Activation of the Ataxia Telangiectasia Mutated/Autophagy pathway by a G-quadruplex ligand links senescence with apoptosis. Mol Cell Oncol. 2019;6:1604047.
  • Ma X, Awadasseid A, Zhou K, et al. A 1,10-phenanthroline derivative selectively targeting telomeric G-quadruplex induces cytoprotective autophagy, causing apoptosis of gastric cancer cells. Life Sci. 2021;287:120095.
  • Li L, Li Y, Zhao J, et al. CX-5461 induces autophagy and inhibits tumor growth via mammalian target of rapamycin-related signaling pathways in osteosarcoma. Onco Targets Ther. 2016;9:5985–5997.
  • Bossaert M, Pipier A, Riou J-F, et al. Transcription-associated topoisomerase 2a (TOP2A) activity is a major effector of cytotoxicity induced by G-quadruplex ligands. eLife. 2021;10:e65184.
  • Xu H, Hurley LH. A first-in-class clinical G-quadruplex-targeting drug. The bench-to-bedside translation of the fluoroquinolone QQ58 to CX-5461 (Pidnarulex). Bioorg Med Chem Lett. 2022;77:129016.
  • Ismael M, Webb R, Ajaz M, et al. The Targeting of RNA polymerase I transcription using CX-5461 in combination with radiation enhances tumour cell killing effects in human solid cancers. Cancers (Basel). 2019;11:E1429.
  • Chen H, Duo Y, Hu B, et al. PICT-1 triggers a pro-death autophagy through inhibiting rRNA transcription and AKT/mTOR/p70S6K signaling pathway. Oncotarget. 2016;7:78747–78763.
  • Dannheisig DP, Schimansky A, Donow C, et al. Nucleolar stress functions upstream to stimulate expression of autophagy regulators. Cancers (Basel). 2021;13:6220.
  • Sanchez-Martin V, Schneider DA, Ortiz-Gonzalez M, et al. Targeting ribosomal G-quadruplexes with naphthalene-diimides as RNA polymerase I inhibitors for colorectal cancer treatment. Cell Chem Biol. 2021;28(1590–1601.e4)
  • Wang X, Zhang M, Xiong X-Q, et al. Design, synthesis and bioactivity of novel naphthalimide-benzotriazole conjugates against A549 cells via targeting BCL2 G-quadruplex and inducing autophagy. Life Sci. 2022;302:120651.
  • Lejault P, Moruno-Manchon JF, Vemu SM, et al. Regulation of autophagy by DNA G-quadruplexes. Autophagy. 2020;16:2252–2259.
  • Yousefi S, Perozzo R, Schmid I, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 2006;8:1124–1132.
  • Rubinstein AD, Eisenstein M, Ber Y, et al. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell. 2011;44:698–709.
  • Onorati A, Dyczynski M, Ojha R, et al. Targeting autophagy in cancer. Cancer. 2018;124:3307–3318.
  • Dumas L, Herviou P, Dassi E, et al. G-Quadruplexes in RNA biology: recent advances and future directions. Trends Biochem Sci. 2021;46:270–283.
  • Burge S, Parkinson GN, Hazel P, et al. DNA: sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–5415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.