1,486
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

PtdIns4P exchange at endoplasmic reticulum-autolysosome contacts is essential for autophagy and neuronal homeostasis

, , , , , & ORCID Icon show all
Pages 2682-2701 | Received 03 Jul 2022, Accepted 02 Jun 2023, Published online: 13 Jun 2023

References

  • Prinz WA, Toulmay A, Balla T. The functional universe of membrane contact sites. Nat Rev Mol Cell Biol. 2020 Jan;21(1):7–24. PubMed PMID: 31732717. doi:10.1038/s41580-019-0180-9.
  • Bohnert M. Tether me, tether me not-dynamic organelle contact sites in metabolic rewiring. Dev Cell. 2020 Jul 20;54(2):212–225. PubMed PMID: 32693056. doi:10.1016/j.devcel.2020.06.026.
  • Wu Y, Whiteus C, Xu CS, et al. Contacts between the endoplasmic reticulum and other membranes in neurons. Proc Natl Acad Sci, USA. 2017 Jun 13;114(24):E4859–E4867. PubMed PMID: 28559323; PubMed Central PMCID: PMC5474793. doi: 10.1073/pnas.1701078114
  • Cohen S, Valm AM, Lippincott-Schwartz J. Interacting organelles. Curr Opinion Cell Biol. 2018 Aug;53:84–91. PubMed PMID: 30006038; PubMed Central PMCID: PMC6241252. doi:10.1016/j.ceb.2018.06.003.
  • De Vos KJ, Morotz GM, Stoica R, et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet. 2012 Mar 15;21(6):1299–1311. doi:10.1093/hmg/ddr559. PubMed PMID: 22131369; PubMed Central PMCID: PMC3284118.
  • Eisenberg-Bord M, Shai N, Schuldiner M, et al. A tether is a tether is a tether: tethering at membrane contact sites. Dev Cell. 2016 Nov 21;39(4):395–409. doi:10.1016/j.devcel.2016.10.022. PubMed PMID: 27875684.
  • Murphy SE, Levine TP. VAP, a versatile access point for the endoplasmic reticulum: review and analysis of FFAT-like motifs in the VAPome. Biochim Biophys Acta. 2016 Aug;1861(8):952–961. PubMed PMID: 26898182. doi:10.1016/j.bbalip.2016.02.009.
  • Cabukusta B, Berlin I, van Elsland DM, et al. Human VAPome analysis reveals MOSPD1 and MOSPD3 as membrane contact site proteins interacting with FFAT-Related FFNT motifs. Cell Rep. 2020 Dec 8;33(10):108475. doi:10.1016/j.celrep.2020.108475. PubMed PMID: 33296653.
  • Zhang Y, Liu X, Bai J, et al. Mitoguardin regulates mitochondrial fusion through MitoPLD and is required for neuronal homeostasis. Molecular Cell. 2016 Jan 7;61(1):111–124. doi:10.1016/j.molcel.2015.11.017. PubMed PMID: 26711011.
  • Xu L, Wang X, Zhou J, et al. Miga-mediated endoplasmic reticulum-mitochondria contact sites regulate neuronal homeostasis. Elife. 2020 Jul 10;9. PubMed PMID: 32648543; PubMed Central PMCID: PMC7556861. doi: 10.7554/eLife.56584
  • Alpy F, Rousseau A, Schwab Y, et al. STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. J Cell Sci. 2013 Dec 1;126(Pt 23):5500–5512. PubMed PMID: 24105263. doi:10.1242/jcs.139295
  • Peretti D, Dahan N, Shimoni E, et al. Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport? Mol Biol Cell. 2008 Sep;19(9):3871–3884. PubMed PMID: 18614794; PubMed Central PMCID: PMC2526681. doi:10.1091/mbc.E08-05-0498.
  • Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol. 2020 Aug;21(8):439–458. PubMed PMID: 32372019. doi:10.1038/s41580-020-0241-0.
  • Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018 Jun;19(6):349–364. PubMed PMID: 29618831. doi:10.1038/s41580-018-0003-4.
  • Feng Y, He D, Yao Z, et al. The machinery of macroautophagy. Cell Res. 2014 Jan;24(1):24–41. PubMed PMID: 24366339; PubMed Central PMCID: PMC3879710. doi:10.1038/cr.2013.168.
  • Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol. 2021 Nov;22(11):733–750. PubMed PMID: 34302147; PubMed Central PMCID: PMC8300085. doi:10.1038/s41580-021-00392-4.
  • Hamasaki M, Furuta N, Matsuda A, et al. Autophagosomes form at ER-mitochondria contact sites. Nature. 2013 Mar 21;495(7441):389–393. PubMed PMID: 23455425. doi: 10.1038/nature11910
  • Gomez-Suaga P, Paillusson S, Stoica R, et al. The ER-Mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr Biol. 2017 Feb 6;27(3):371–385. doi:10.1016/j.cub.2016.12.038. PubMed PMID: 28132811; PubMed Central PMCID: PMC5300905.
  • Bosc C, Broin N, Fanjul M, et al. Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites. Nat Commun. 2020 Aug 13;11(1):4056. PubMed PMID: 32792483; PubMed Central PMCID: PMC7426880. doi: 10.1038/s41467-020-17882-2
  • Zhao YG, Chen Y, Miao G, et al. The ER-Localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-Isolation membrane contacts for autophagosome formation. Molecular Cell. 2017 Sep 21;67(6):974–989.e6 PubMed PMID: 28890335. doi: 10.1016/j.molcel.2017.08.005
  • Zhao YG, Liu N, Miao G, et al. The ER contact proteins VAPA/B interact with multiple Autophagy proteins to modulate Autophagosome Biogenesis. Curr Biol. 2018 Apr 23;28(8):1234–1245.e4. PubMed PMID: 29628370. doi: 10.1016/j.cub.2018.03.002
  • Zhang H, Zhou J, Xiao P, et al. PtdIns4P restriction by hydrolase SAC1 decides specific fusion of autophagosomes with lysosomes. Autophagy. 2021 Aug;17(8):1907–1917. PubMed PMID: 32693712; PubMed Central PMCID: PMC8386628. doi:10.1080/15548627.2020.1796321.
  • Mesmin B, Bigay J, Moser von Filseck J, et al. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell. 2013 Nov 7;155(4):830–843. PubMed PMID: 24209621. doi:10.1016/j.cell.2013.09.056
  • Balla A, Balla T. Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends in cell biology. 2006 Jul;16(7):351–361. PubMed PMID: 16793271. doi: 10.1016/j.tcb.2006.05.003
  • D’Angelo G, Vicinanza M, Di Campli A, et al. The multiple roles of PtdIns(4)P – not just the precursor of PtdIns(4,5)P2. J Cell Sci. 2008 Jun 15;121(Pt 12):1955–1963. PubMed PMID: 18525025. doi: 10.1242/jcs.023630
  • Graham TR, Burd CG. Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends in cell biology. 2011 Feb;21(2):113–121. PubMed PMID: 21282087; PubMed Central PMCID: PMC3053015. doi: 10.1016/j.tcb.2010.10.002
  • Wang K, Yang Z, Liu X, et al. Phosphatidylinositol 4-kinases are required for autophagic membrane trafficking. J Biol Chem. 2012 Nov 2;287(45):37964–37972. PubMed PMID: 22977244; PubMed Central PMCID: PMC3488067. doi:10.1074/jbc.M112.371591
  • Wang H, Sun HQ, Zhu X, et al. Gabaraps regulate PI4P-dependent autophagosome: lysosome fusion. Proc Natl Acad Sci, USA. 2015 Jun 2;112(22):7015–7020. PubMed PMID: 26038556; PubMed Central PMCID: PMC4460452. doi: 10.1073/pnas.1507263112
  • Judith D, Jefferies HBJ, Boeing S, et al. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIbeta. J Cell Bio. 2019 May 6;218(5):1634–1652. PubMed PMID: 30917996; PubMed Central PMCID: PMC6504893. doi: 10.1083/jcb.201901115
  • Rahajeng J, Kuna RS, Makowski SL, et al. Efficient Golgi forward trafficking requires GOLPH3-driven, PI4P-Dependent membrane curvature. Dev Cell. 2019 Sep 9;50(5):573–585.e5. PubMed PMID: 31231041; PubMed Central PMCID: PMC7583631. doi: 10.1016/j.devcel.2019.05.038
  • Ghabrial AS, Levi BP, Krasnow MA, et al. A systematic screen for tube morphogenesis and branching genes in the Drosophila tracheal system. PLoS Genet. 2011 Jul;7(7):e1002087. PubMed PMID: 21750678; PubMed Central PMCID: PMCPMC3131284. doi:10.1371/journal.pgen.1002087.
  • Takats S, Nagy P, Varga A, et al. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J Cell Bio. 2013 May 13;201(4):531–539. PubMed PMID: 23671310; PubMed Central PMCID: PMC3653357. doi: 10.1083/jcb.201211160
  • Hama H, Schnieders EA, Thorner J, et al. Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem. 1999 Nov 26;274(48):34294–34300. doi:10.1074/jbc.274.48.34294. PubMed PMID: 10567405.
  • Hammond GR, Machner MP, Balla T. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J Cell Bio. 2014 Apr 14;205(1):113–126. PubMed PMID: 24711504; PubMed Central PMCID: PMC3987136. doi: 10.1083/jcb.201312072
  • Balakrishnan SS, Basu U, Raghu P. Phosphoinositide signalling in Drosophila. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids. 2015 Jun;1851(6):770–784. PubMed PMID: 25449646. doi:10.1016/j.bbalip.2014.10.010.
  • Mao D, Lin G, Tepe B, et al. VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway. Autophagy. 2019 Jul;15(7):1214–1233. PubMed PMID: 30741620; PubMed Central PMCID: PMC6613884. doi:10.1080/15548627.2019.1580103.
  • Zhao K, Ridgway ND. Oxysterol-binding protein-related protein 1L regulates cholesterol egress from the endo-lysosomal system. Cell Rep. 2017 May 30;19(9):1807–1818. PubMed PMID: 28564600. doi:10.1016/j.celrep.2017.05.028.
  • Hoglinger D, Burgoyne T, Sanchez-Heras E, et al. NPC1 regulates ER contacts with endocytic organelles to mediate cholesterol egress. Nat Commun. 2019 Sep 19;10(1):4276. PubMed PMID: 31537798; PubMed Central PMCID: PMC6753064. doi: 10.1038/s41467-019-12152-2
  • Lim CY, Davis OB, Shin HR, et al. ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-pick type C. Nat Cell Biol. 2019 Oct;21(10):1206–1218. PubMed PMID: 31548609; PubMed Central PMCID: PMC6936960. doi:10.1038/s41556-019-0391-5.
  • Lu A, Hsieh F, Sharma BR, et al. CRISPR screens for lipid regulators reveal a role for ER-bound SNX13 in lysosomal cholesterol export. J Cell Bio. 2022 Feb 7;221(2). PubMed PMID: 34936700; PubMed Central PMCID: PMC8704955. doi: 10.1083/jcb.202105060
  • Liu K, Kong L, Graham DB, et al. SAC1 regulates autophagosomal phosphatidylinositol-4-phosphate for xenophagy-directed bacterial clearance. Cell Rep. 2021 Jul 27;36(4):109434. PubMed PMID: 34320354; PubMed Central PMCID: PMCPMC8327279. doi:10.1016/j.celrep.2021.109434.
  • Tan JX, Finkel T. A phosphoinositide signalling pathway mediates rapid lysosomal repair. Nature. 2022 Sep;609(7928):815–821. PubMed PMID: 36071159; PubMed Central PMCID: PMCPMC9450835 Generian Pharmaceuticals. doi:10.1038/s41586-022-05164-4.
  • Port F, Bullock SL. Augmenting CRISPR applications in Drosophila with Trna-flanked sgRnas. Nat Methods. 2016 Oct;13(10):852–854. PubMed PMID: 27595403; PubMed Central PMCID: PMC5215823. doi:10.1038/nmeth.3972.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.