561
Views
0
CrossRef citations to date
0
Altmetric
Meeting Report

A burning question from the first international BPAN symposium: is restoration of autophagy a promising therapeutic strategy for BPAN?

ORCID Icon, , , , , , , , , , , , ORCID Icon & show all
Pages 3234-3239 | Received 27 Jan 2023, Accepted 31 Jul 2023, Published online: 31 Aug 2023

References

  • Wilson JL, Gregory A, Kurian MA, et al. Consensus clinical management guideline for beta-propeller protein-associated neurodegeneration. Dev Med Child Neurol. 2021;63(12):1402–1409. doi: 10.1111/dmcn.14980
  • Gregory A, Kurian MA, Haack T, et al. Beta-Propeller Protein-Associated Neurodegeneration. In: Margaret PA, Ghayda MM, Roberta AP, et al., editors. GeneReviews((R)). Seattle (WA): University of Washington, Seattle; 1993.
  • Haack TB, Hogarth P, Kruer M, et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am J Hum Genet. 2012;91(6):1144–1149. doi: 10.1016/j.ajhg.2012.10.019
  • Saitsu H, Nishimura T, Muramatsu K, et al. De Novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet. 2013;45(4):445–9, 449e1. doi: 10.1038/ng.2562
  • Adang LA, Pizzino A, Malhotra A, et al. Phenotypic and Imaging spectrum associated with WDR45. Pediatr Neurol. 2020;109:56–62. doi: 10.1016/j.pediatrneurol.2020.03.005
  • Zhao YG, Sun L, Miao G, et al. The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis. Autophagy. 2015;11(6):881–890. doi: 10.1080/15548627.2015.1047127
  • Wan H, wang Q, Chen X, et al. WDR45 contributes to neurodegeneration through regulation of ER homeostasis and neuronal death. Autophagy. 2019;16(3):531–547.
  • Biagosch CA, Vidali S, Faerberboeck M, et al. A comprehensive phenotypic characterization of a whole-body Wdr45 knock-out mouse. Mamm Genome. 2021;32(5):332–349. doi: 10.1007/s00335-021-09875-3
  • Noda M, Ito H, Nagata KI. Physiological significance of WDR45, a responsible gene for β-propeller protein associated neurodegeneration (BPAN), in brain development. Sci Rep. 2021;11(1):22568. doi: 10.1038/s41598-021-02123-3
  • Lu Q, Yang P, Huang X, et al. The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell. 2011;21(2):343–357. doi: 10.1016/j.devcel.2011.06.024
  • Tornero-Écija A, Tábara L-C, Bueno-Arribas M, et al. A dictyostelium model for BPAN disease reveals a functional relationship between the WDR45/WIPI4 homolog Wdr45l and Vmp1 in the regulation of autophagy-associated PtdIns3P and ER stress. Autophagy. 2021;18(3):1–17. doi: 10.1080/15548627.2021.1953262
  • Seibler P, Burbulla LF, Dulovic M, et al. Iron overload is accompanied by mitochondrial and lysosomal dysfunction in WDR45 mutant cells. Brain. 2018;141(10):3052–3064. doi: 10.1093/brain/awy230
  • Lee JH, Nam SO, Kim EK, et al. Autophagic defects observed in fibroblasts from a patient with β-propeller protein-associated neurodegeneration. Am J Med Genet A. 2021;185(12):3866–3871. doi: 10.1002/ajmg.a.62442
  • Aring L, Choi E-K, Kopera H, et al. A neurodegeneration gene, WDR45, links impaired ferritinophagy to iron accumulation. J Neurochem. 2022;160(3):356–375. doi: 10.1111/jnc.15548
  • Mollereau B, Walter L. Is WDR45 the missing link for ER stress-induced autophagy in beta-propeller associated neurodegeneration? Autophagy. 2019;15(12):1–2. doi: 10.1080/15548627.2019.1668229
  • Boland B, Yu WH, Corti O, et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2018;17(9):660–688. doi: 10.1038/nrd.2018.109
  • Napoletano F, Baron O, Vandenabeele P, et al. Intersections between regulated Cell death and autophagy. Trends Cell Biol. 2019;9(4):323–338. doi: 10.1016/j.tcb.2018.12.007
  • Fouillet A, Levet C, Virgone A, et al. ER stress inhibits neuronal death by promoting autophagy. Autophagy. 2012;8(6):915–926. doi: 10.4161/auto.19716
  • Robin M, Issa AR, Santos CC, et al. Drosophila p53 integrates the antagonism between autophagy and apoptosis in response to stress. Autophagy. 2019;15(5):771–784. doi: 10.1080/15548627.2018.1558001
  • Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1. Autophagy. 2021;17(1):1–382. doi: 10.1080/15548627.2020.1797280
  • Dominguez-Martin E, Ongay-Larios L, Kawasaki L, et al. IreA controls endoplasmic reticulum stress-induced autophagy and Survival through homeostasis recovery. Mol Cell Biol. 2018;38(13): doi: 10.1128/MCB.00054-18
  • Vincent O, Antón-Esteban L, Bueno-Arribas M, et al. The WIPI gene family and neurodegenerative diseases: Insights from yeast and dictyostelium models. Front Cell Dev Biol. 2021;9:737071. doi: 10.3389/fcell.2021.737071
  • Bueno-Arribas M, Blanca I, Cruz-Cuevas C, et al. A conserved ATG2 binding site in WIPI4 and yeast Hsv2 is disrupted by mutations causing β-propeller protein-associated neurodegeneration. Hum Mol Genet. 2021;31(1):111–121. doi: 10.1093/hmg/ddab225
  • Tabara LC, Vincent O, Escalante R. Evidence for an evolutionary relationship between Vmp1 and bacterial DedA proteins. Int J Dev Biol. 2019;63(1–2):67–71. doi: 10.1387/ijdb.180312re
  • Tabara LC, Vicente J-J, Biazik J, et al. Vacuole membrane protein 1 marks endoplasmic reticulum subdomains enriched in phospholipid synthesizing enzymes and is required for phosphoinositide distribution. Traffic. 2018;19(8):624–638. doi: 10.1111/tra.12581
  • Zanuttigh E, Derderian K, Güra MA, et al. Identification of autophagy as a functional target suitable for the pharmacological treatment of mitochondrial Membrane Protein-Associated Neurodegeneration (MPAN) in vitro. Pharmaceutics. 2023;15(1):267. doi: 10.3390/pharmaceutics15010267
  • Mauthe M, Kampinga HH, Hipp MS, et al. Digest it all: the lysosomal turnover of cytoplasmic aggregates. Trends Biochem Sci. 2022;48(3):216–228. doi: 10.1016/j.tibs.2022.09.012
  • Mauthe M, Dinesh Kumar N, Verlhac P, et al. HSBP1 is a novel interactor of FIP200 and ATG13 that promotes autophagy initiation and picornavirus replication. Front Cell Infect Microbiol. 2021;11:745640. doi: 10.3389/fcimb.2021.745640
  • Mauthe M, Orhon I, Rocchi C, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14(8):1435–1455. doi: 10.1080/15548627.2018.1474314
  • Haack TB, Ignatius E, Calvo-Garrido J, et al. Absence of the autophagy adaptor SQSTM1/p62 causes childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy. Am J Hum Genet. 2016;99(3):735–743. doi: 10.1016/j.ajhg.2016.06.026
  • Proikas-Cezanne T, Waddell S, Gaugel A, et al. WIPI-1α (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene. 2004;23(58):9314–9325. doi: 10.1038/sj.onc.1208331
  • Bakula D, Mueller AJ, Proikas-Cezanne T. WIPI beta-propellers function as scaffolds for STK11/LKB1-AMPK and AMPK-related kinase signaling in autophagy. Autophagy. 2018;14(6):1082–1083. doi: 10.1080/15548627.2017.1382784
  • Cong Y, So V, Tijssen MAJ, et al. WDR45, one gene associated with multiple neurodevelopmental disorders. Autophagy. 2021;17(12):1–16. doi: 10.1080/15548627.2021.1899669
  • Munoz-Braceras S, Tornero-Écija AR, Vincent O, et al. VPS13A is closely associated with mitochondria and is required for efficient lysosomal degradation. Dis Model Mech. 2019;12(2): doi: 10.1242/dmm.036681
  • Bakula D, Müller AJ, Zuleger T, et al. WIPI3 and WIPI4 β-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nat Commun. 2017;8(1):15637. doi: 10.1038/ncomms15637
  • Dove SK, Piper RC, McEwen RK, et al. Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J. 2004;23(9):1922–1933. doi: 10.1038/sj.emboj.7600203
  • Shimizu T, Tamura N, Nishimura T, et al. Comprehensive analysis of autophagic functions of WIPI family proteins and their implications for the pathogenesis of beta-propeller associated neurodegeneration. Hum Mol Genet. 2023;32(16):2623–2637. doi: 10.1093/hmg/ddad096
  • Almannai M, Marafi D, El-Hattab AW. WIPI proteins: biological functions and related syndromes. Front Mol Neurosci. 2022;15:1011918. doi: 10.3389/fnmol.2022.1011918
  • Nakatogawa H, Suzuki K, Kamada Y, et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458–467. doi: 10.1038/nrm2708
  • Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;15(7):713–720. doi: 10.1038/ncb2788
  • Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19(6):349–364. doi: 10.1038/s41580-018-0003-4
  • Tsukida K, Muramatsu S-I, Osaka H, et al. WDR45 variants cause ferrous iron loss due to impaired ferritinophagy associated with nuclear receptor coactivator 4 and WD repeat domain phosphoinositide interacting protein 4 reduction. Brain Commun. 2022;4(6):fcac 304. doi: 10.1093/braincomms/fcac304
  • Bozic M, van den Bekerom L, Milne BA, et al. A conserved ATG2-GABARAP family interaction is critical for phagophore formation. EMBO Rep. 2020;21(3):e48412. doi: 10.15252/embr.201948412
  • Ji C, Zhao H, Chen D, et al. β-propeller proteins WDR45 and WDR45B regulate autophagosome maturation into autolysosomes in neural cells. Curr Biol. 2021;31(8):1666–1677.e6. doi: 10.1016/j.cub.2021.01.081
  • Diaw SH, Ganos C, Zittel S, et al. Mutant WDR45 leads to altered ferritinophagy and ferroptosis in β-propeller protein-associated neurodegeneration. Int J Mol Sci. 2022;23(17):9524. doi: 10.3390/ijms23179524
  • Quiles Del Rey M, Mancias JD. NCOA4-mediated ferritinophagy: a potential link to neurodegeneration. Front Neurosci. 2019;13:238. doi: 10.3389/fnins.2019.00238
  • Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095):885–889. doi: 10.1038/nature04724
  • Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441(7095):880–884. doi: 10.1038/nature04723
  • Korolchuk VI, Sarkar S, Fanto M. Autophagy in neurodegenerative diseases. J Mol Biol. 2020;432(8):2445–2448. doi: 10.1016/j.jmb.2020.03.005
  • Sanchez-Mirasierra I, Ghimire S, Hernandez-Diaz S, et al. Targeting macroautophagy as a therapeutic opportunity to treat Parkinson’s disease. Front Cell Dev Biol. 2022;10:921314. doi: 10.3389/fcell.2022.921314
  • Deneubourg C, Ramm M, Smith LJ, et al. The spectrum of neurodevelopmental, neuromuscular and neurodegenerative disorders due to defective autophagy. Autophagy. 2022;18(3):496–517. doi: 10.1080/15548627.2021.1943177
  • Kim M, Sandford E, Gatica D, et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. Elife. 2016;5:5. doi: 10.7554/eLife.12245
  • Collier JJ, Guissart C, Oláhová M, et al. Developmental consequences of defective ATG7-mediated autophagy in humans. N Engl J Med. 2021;384(25):2406–2417. doi: 10.1056/NEJMoa1915722
  • Yan AL, Du SW, Palczewski K. Genome editing, a superior therapy for inherited retinal diseases. Vision Res. 2023;206:108192. doi: 10.1016/j.visres.2023.108192
  • Paulino R, Nobrega C. Autophagy in spinocerebellar ataxia type 3: from pathogenesis to therapeutics. Int J Mol Sci. 2023;24(8):7405. doi: 10.3390/ijms24087405
  • Ji C, Zhao YG. The BPAN and intellectual disability disease proteins WDR45 and WDR45B modulate autophagosome-lysosome fusion. Autophagy. 2021;17(7):1783–1784. doi: 10.1080/15548627.2021.1924039
  • Sevin C, Deiva K. Clinical trials for gene therapy in lysosomal diseases with CNS involvement. Front Mol Biosci. 2021;8:624988. doi: 10.3389/fmolb.2021.624988
  • Bourdenx M, Daniel J, Genin E, et al. Nanoparticles restore lysosomal acidification defects: implications for Parkinson and other lysosomal-related diseases. Autophagy. 2016;12(3):472–483. doi: 10.1080/15548627.2015.1136769
  • Le Bras A. Optimizing AAV delivery to the brain. Lab Anim (NY). 2022;51(2):45. doi: 10.1038/s41684-022-00924-1
  • Fischell JM, Fishman PS. A multifaceted approach to optimizing AAV delivery to the brain for the treatment of neurodegenerative diseases. Front Neurosci. 2021;15:747726. doi: 10.3389/fnins.2021.747726

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.