3,558
Views
0
CrossRef citations to date
0
Altmetric
Review

Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease

, ORCID Icon & ORCID Icon
Pages 221-241 | Received 01 May 2023, Accepted 24 Aug 2023, Published online: 12 Sep 2023

References

  • Godoy-Matos AF, Silva Junior WS, Valerio CM. NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol Metab Syndr. 2020;12(1):60. doi: 10.1186/s13098-020-00570-y
  • Hardy T, Oakley F, Anstee QM, et al. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu Rev Pathol. 2016 May 23;11(1):451–496. doi: 10.1146/annurev-pathol-012615-044224
  • Romero-Gomez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol. 2017 Oct;67(4):829–846. doi: 10.1016/j.jhep.2017.05.016
  • Younossi Z, Tacke F, Arrese M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019 Jun;69(6):2672–2682. doi: 10.1002/hep.30251
  • Younes R, Bugianesi E. A spotlight on pathogenesis, interactions and novel therapeutic options in NAFLD. Nat Rev Gastroenterol Hepatol. 2019 Feb;16(2):80–82. doi: 10.1038/s41575-018-0094-6
  • Li J, Zou B, Yeo YH, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2019 May;4(5):389–398. doi: 10.1016/S2468-1253(19)30039-1
  • Horas HNS, Nishiumi S, Kawano Y, et al. Adrenic acid as an inflammation enhancer in non-alcoholic fatty liver disease. Arch Biochem Biophys. 2017 Jun 1;623-624:64–75.
  • Zhong J, Gong W, Chen J, et al. Micheliolide alleviates hepatic steatosis in db/db mice by inhibiting inflammation and promoting autophagy via PPAR-gamma-mediated NF-small ka, CyrillicB and AMPK/mTOR signaling. Int Immunopharmacol. 2018 Jun;59:197–208.
  • Fouad Y, Waked I, Bollipo S, et al. What’s in a name? Renaming ‘NAFLD’ to ‘MAFLD’. Liver Int. 2020 Jun;40(6):1254–1261. doi: 10.1111/liv.14478
  • Eslam M, Sanyal AJ, George J, et al. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020 May;158(7):1999–2014 e1. doi: 10.1053/j.gastro.2019.11.312
  • Cotter TG, Rinella M. Nonalcoholic fatty liver disease 2020: the state of the disease. Gastroenterology. 2020 May;158(7):1851–1864. doi: 10.1053/j.gastro.2020.01.052
  • Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018 Jan;15(1):11–20. doi: 10.1038/nrgastro.2017.109
  • Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016 Jul;64(1):73–84. doi: 10.1002/hep.28431
  • Zhou J, Zhou F, Wang W, et al. Epidemiological features of NAFLD from 1999 to 2018 in China. Hepatology. 2020 May;71(5):1851–1864. doi: 10.1002/hep.31150
  • Younossi ZM, Golabi P, de Avila L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J Hepatol. 2019 Oct;71(4):793–801. doi: 10.1016/j.jhep.2019.06.021
  • Nobili V, Alisi A, Valenti L, et al. NAFLD in children: new genes, new diagnostic modalities and new drugs. Nat Rev Gastroenterol Hepatol. 2019 Sep;16(9):517–530. doi: 10.1038/s41575-019-0169-z
  • Jahn D, Kircher S, Hermanns HM, et al. Animal models of NAFLD from a hepatologist’s point of view. Biochim Biophys Acta Mol Basis Dis. 2019 May 1;1865(5):943–953. doi: 10.1016/j.bbadis.2018.06.023
  • Lian CY, Zhai ZZ, Li ZF, et al. High fat diet-triggered non-alcoholic fatty liver disease: a review of proposed mechanisms. Chem Biol Interact. 2020 Oct 1;330:109199.
  • Zhang F, Zhao S, Yan W, et al. Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and Inhibiting hepatic autophagy. EBioMedicine. 2016 Nov;13:157–167.
  • Rahmadi M, Nurhan AD, Pratiwi ED, et al. The effect of various high-fat diet on liver histology in the development of NAFLD models in mice. J Basic Clin Physiol Pharmacol. 2021 Jun 25;32(4):547–553. doi: 10.1515/jbcpp-2020-0426
  • Lu W, Mei J, Yang J, et al. ApoE deficiency promotes non-alcoholic fatty liver disease in mice via impeding AMPK/mTOR mediated autophagy. Life Sci. 2020 Jul 1;252:117601.
  • Zhang H, Yan S, Khambu B, et al. Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply. Autophagy. 2018;14(10):1779–1795. doi: 10.1080/15548627.2018.1490850
  • Tu G, Dai C, Qu H, et al. Role of exercise and rapamycin on the expression of energy metabolism genes in liver tissues of rats fed a high‑fat diet. Mol Med Rep. 2020 Oct;22(4):2932–2940. doi: 10.3892/mmr.2020.11362
  • Zhou W, Ye S. Rapamycin improves insulin resistance and hepatic steatosis in type 2 diabetes rats through activation of autophagy. Cell Biol Int. 2018 Sep;42(10):1282–1291. doi: 10.1002/cbin.11015
  • Ramos VM, Kowaltowski AJ, Kakimoto PA. Autophagy in hepatic steatosis: a structured review. Front Cell Dev Biol. 2021;9:657389. doi: 10.3389/fcell.2021.657389
  • Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol. 2017 Nov 6;27(21):R1147–R1151.
  • Qian H, Chao X, Williams J, et al. Autophagy in liver diseases: a review. Mol Aspects Med. 2021 Dec;82:100973.
  • Byrnes K, Blessinger S, Bailey NT, et al. Therapeutic regulation of autophagy in hepatic metabolism. Acta Pharm Sin B. 2022 Jan;12(1):33–49. doi: 10.1016/j.apsb.2021.07.021
  • Yin XM, Ding WX, Gao W. Autophagy in the liver. Hepatology. 2008 May;47(5):1773–1785. doi: 10.1002/hep.22146
  • Ding WX. Role of autophagy in liver physiology and pathophysiology. World J Biol Chem. 2010 Jan 26;1(1):3–12.
  • Rautou PE, Mansouri A, Lebrec D, et al. Autophagy in liver diseases. J Hepatol. 2010 Dec;53(6):1123–1134. doi: 10.1016/j.jhep.2010.07.006
  • Orabi D, Berger NA, Brown JM. Abnormal metabolism in the progression of nonalcoholic fatty liver disease to hepatocellular carcinoma: mechanistic insights to chemoprevention. Cancers (Basel). 2021 Jul 11;13(14):3473.
  • Pietrocola F, Bravo-San Pedro JM. Targeting autophagy to counteract obesity-associated oxidative stress. Antioxidants. 2021 Jan 12;10(1):102.
  • Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy. 2011 Jul;7(7):673–682. doi: 10.4161/auto.7.7.14733
  • Wang YT, Lu JH. Chaperone-mediated autophagy in neurodegenerative diseases: molecular mechanisms and pharmacological opportunities. Cells. 2022 Jul 20;11(14):2250.
  • Olsvik HL, Svenning S, Abudu YP, et al. Endosomal microautophagy is an integrated part of the autophagic response to amino acid starvation. Autophagy. 2019 Jan;15(1):182–183. doi: 10.1080/15548627.2018.1532265
  • Flores-Toro JA, Go KL, Leeuwenburgh C, et al. Autophagy in the liver: cell’s cannibalism and beyond. Arch Pharm Res. 2016 Aug;39(8):1050–1061. doi: 10.1007/s12272-016-0807-8
  • Hayashi-Nishino M, Fujita N, Noda T, et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol. 2009 Dec;11(12):1433–1437. doi: 10.1038/ncb1991
  • Yla-Anttila P, Vihinen H, Jokitalo E, et al. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy. 2009 Nov;5(8):1180–1185. doi: 10.4161/auto.5.8.10274
  • Geng J, Nair U, Yasumura-Yorimitsu K, et al. Post-Golgi sec proteins are required for autophagy in Saccharomyces cerevisiae. ?Mol Biol Cell. 2010 Jul 1;21(13):2257–2269. doi: 10.1091/mbc.e09-11-0969
  • van der Vaart A, Griffith J, Reggiori F, et al. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. ?Mol Biol Cell. 2010;21(13):2270–2284. doi: 10.1091/mbc.e09-04-0345
  • Yen WL, Shintani T, Nair U, et al. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Bio. 2010 Jan 11;188(1):101–114. doi: 10.1083/jcb.200904075
  • Guo Y, Chang C, Huang R, et al. AP1 is essential for generation of autophagosomes from the trans-Golgi network. J Cell Sci. 2012 Apr 01;125(Pt 7):1706–1715. doi: 10.1242/jcs.093203
  • Hailey DW, Rambold AS, Satpute-Krishnan P, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 2010 May 14;141(4):656–667. doi: 10.1016/j.cell.2010.04.009
  • Ravikumar B, Moreau K, Jahreiss L, et al. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol. 2010 Aug;12(8):747–757. doi: 10.1038/ncb2078
  • Puri C, Renna M, Bento CF, et al. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell. 2013 Sep 12;154(6):1285–1299. doi: 10.1016/j.cell.2013.08.044
  • Longatti A, Lamb CA, Razi M, et al. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Bio. 2012 May 28;197(5):659–675. doi: 10.1083/jcb.201111079
  • Razi M, Chan EY, Tooze SA. Early endosomes and endosomal coatomer are required for autophagy. J Cell Bio. 2009 Apr 20;185(2):305–321.
  • Tana D, Cai Y, Wangd J, et al. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. Proc Natl Acad Sci USA. 2013;110(48):19432–19437. doi: 10.1073/pnas.1316356110
  • Lemus L, Ribas JL, Sikorska N, et al. An ER-Localized SNARE protein is exported in specific COPII vesicles for autophagosome biogenesis. Cell Rep. 2016 Feb 23;14(7):1710–1722. doi: 10.1016/j.celrep.2016.01.047
  • Ge L, Melville D, Zhang M, et al. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife. 2013 Aug 06;2:e00947.
  • Ge L, Zhang M, Schekman R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. Elife. 2014 Nov 28;3:e04135. doi: 10.7554/eLife.04135
  • Charsou C, Ng MYW, Simonsen A. Regulation of autophagosome biogenesis and mitochondrial bioenergetics by the cholesterol transport protein GRAMD1C. Autophagy. 2022 Dec;12(7):1–3. doi: 10.1080/15548627.2022.2155020
  • Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014 Jan 20;20(3):460–473.
  • Wang H, Liu Y, Wang D, et al. The upstream pathway of mTOR-Mediated autophagy in liver diseases. Cells. 2019 Dec 9;8(12):1597. doi: 10.3390/cells8121597
  • Galluzzi L, Pietrocola F, Levine B, et al. Metabolic control of autophagy. Cell. 2014 Dec 4;159(6):1263–1276. doi: 10.1016/j.cell.2014.11.006
  • Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993 Oct 25;333(1–2):169–174.
  • Nakatogawa H, Suzuki K, Kamada Y, et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009 Jul;10(7):458–467. doi: 10.1038/nrm2708
  • Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017 Sep;17(9):528–542. doi: 10.1038/nrc.2017.53
  • Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol. 2020 Aug;21(8):439–458. doi: 10.1038/s41580-020-0241-0
  • Chao X, Wang H, Jaeschke H, et al. Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver Int. 2018 Aug;38(8):1363–1374. doi: 10.1111/liv.13866
  • Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol. 2010 Apr;22(2):132–139. doi: 10.1016/j.ceb.2009.12.004
  • Russell RC, Tian Y, Yuan H, et al. ULK1 induces autophagy by phosphorylating beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013 Jul;15(7):741–750. doi: 10.1038/ncb2757
  • He C, Levine B. The beclin 1 interactome. Curr Opin Cell Biol. 2010 Apr;22(2):140–149. doi: 10.1016/j.ceb.2010.01.001
  • Polson HE, de Lartigue J, Rigden DJ, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy. 2010 May;6(4):506–522. doi: 10.4161/auto.6.4.11863
  • Dikic I. Proteasomal and autophagic degradation systems. Annu Rev Biochem. 2017 Jun 20;86(1):193–224.
  • Wu WKK, Zhang L, Chan MTV. Autophagy, NAFLD and NAFLD-Related HCC. Adv Exp Med Biol. 2018;1061:127–138.
  • Long M, Li X, Li L, et al. Multifunctional p62 effects underlie Diverse metabolic diseases. Trends Endocrinol Metab. 2017 Nov;28(11):818–830. doi: 10.1016/j.tem.2017.09.001
  • Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222. doi: 10.1080/15548627.2015.1100356
  • Yamamoto YH, Noda T. Autophagosome formation in relation to the endoplasmic reticulum. J Biomed Sci. 2020 Oct 22;27(1):97.
  • Takahashi Y, He H, Tang Z, et al. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat Commun. 2018 Jul 20;9(1):2855. doi: 10.1038/s41467-018-05254-w
  • Takahashi Y, Liang X, Hattori T, et al. VPS37A directs ESCRT recruitment for phagophore closure. J Cell Bio. 2019 Oct 7;218(10):3336–3354. doi: 10.1083/jcb.201902170
  • Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol. 2021 Nov;22(11):733–750. doi: 10.1038/s41580-021-00392-4
  • Jahn R, Scheller RH. Snares–engines for membrane fusion. Nat Rev Mol Cell Biol. 2006 Sep;7(9):631–643. doi: 10.1038/nrm2002
  • Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 2012 Dec 7;151(6):1256–1269.
  • Koike S, Jahn R. Snares define targeting specificity of trafficking vesicles by combinatorial interaction with tethering factors. Nat Commun. 2019 Apr 8;10(1):1608.
  • Sheng R, Qin ZH. History and Current status of autophagy research. Adv Exp Med Biol. 2019;1206:3–37.
  • Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019 Jan 10;176(1–2):11–42.
  • Mizushima N, Levine B, Longo DL. Autophagy in human diseases. N Engl J Med. 2020 Oct 15;383(16):1564–1576.
  • Toledo M, Batista-Gonzalez A, Merheb E, et al. Autophagy regulates the liver clock and glucose metabolism by degrading CRY1. Cell Metab. 2018 Aug 7;28(2):268–281 e4. doi: 10.1016/j.cmet.2018.05.023
  • Ke PY. Diverse functions of autophagy in liver physiology and liver diseases. Int J Mol Sci. 2019 Jan 13;20(2):300.
  • Schneider JL, Cuervo AM. Liver autophagy: much more than just taking out the trash. Nat Rev Gastroenterol Hepatol. 2014 Mar;11(3):187–200. doi: 10.1038/nrgastro.2013.211
  • Madrigal-Matute J, Cuervo AM. Regulation of liver metabolism by autophagy. Gastroenterology. 2016 Feb;150(2):328–339. doi: 10.1053/j.gastro.2015.09.042
  • Lee YA, Noon LA, Akat KM, et al. Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap. Nat Commun. 2018 Nov 23;9(1):4962. doi: 10.1038/s41467-018-07338-z
  • Gregoire IP, Richetta C, Meyniel-Schicklin L, et al. IRGM is a common target of RNA viruses that subvert the autophagy network. PLOS Pathog. 2011 Dec;7(12):e1002422. doi: 10.1371/journal.ppat.1002422
  • Lin YC, Chang PF, Lin HF, et al. Variants in the autophagy-related gene IRGM confer susceptibility to non-alcoholic fatty liver disease by modulating lipophagy. J Hepatol. 2016 Dec;65(6):1209–1216. doi: 10.1016/j.jhep.2016.06.029
  • Bellini G, Miraglia Del Giudice E, Nobili V, et al. The IRGM rs10065172 variant increases the risk for steatosis but not for liver damage progression in Italian obese children. J Hepatol. 2017 Sep;67(3):653–655. doi: 10.1016/j.jhep.2017.02.037
  • Baselli GA, Jamialahmadi O, Pelusi S, et al. Rare ATG7 genetic variants predispose patients to severe fatty liver disease. J Hepatol. 2022 Sep;77(3):596–606. doi: 10.1016/j.jhep.2022.03.031
  • Gonzalez-Rodriguez A, Mayoral R, Agra N, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014 Apr 17;5(4):e1179. doi: 10.1038/cddis.2014.162
  • Ezquerro S, Mocha F, Fruhbeck G, et al. Ghrelin reduces TNF-alpha-induced human hepatocyte apoptosis, autophagy, and pyroptosis: role in obesity-associated NAFLD. J Clin Endocrinol Metab. 2019 Jan 1;104(1):21–37. doi: 10.1210/jc.2018-01171
  • Fukuo Y, Yamashina S, Sonoue H, et al. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol Res. 2014 Sep;44(9):1026–1036. doi: 10.1111/hepr.12282
  • Fukushima H, Yamashina S, Arakawa A, et al. Formation of p62-positive inclusion body is associated with macrophage polarization in non-alcoholic fatty liver disease. Hepatol Res. 2018 Aug;48(9):757–767. doi: 10.1111/hepr.13071
  • Sardiello M, Palmieri M, di Ronza A, et al. A gene network regulating lysosomal biogenesis and function. Science. 2009 Jul 24;325(5939):473–477. doi: 10.1126/science.1174447
  • Napolitano G, Ballabio A. TFEB at a glance. J Cell Sci. 2016 Jul 1;129(13):2475–2481.
  • Tanaka S, Hikita H, Tatsumi T, et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology. 2016 Dec;64(6):1994–2014. doi: 10.1002/hep.28820
  • van Niekerk G, du Toit A, Loos B, et al. Nutrient excess and autophagic deficiency: explaining metabolic diseases in obesity. Metabolism. 2018 May;82:14–21.
  • Gao Y, Zhang W, Zeng LQ, et al. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol. 2020 Sep;36:101635.
  • Kim KE, Jung Y, Min S, et al. Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism. Sci Rep. 2016 Jul 21;6(1):30111. doi: 10.1038/srep30111
  • Pi H, Liu M, Xi Y, et al. Long-term exercise prevents hepatic steatosis: a novel role of FABP1 in regulation of autophagy-lysosomal machinery. FASEB J. 2019 Nov;33(11):11870–11883. doi: 10.1096/fj.201900812R
  • Chun SK, Lee S, Yang MJ, et al. Exercise-induced autophagy in fatty liver disease. Exerc Sport Sci Rev. 2017 Jul;45(3):181–186. doi: 10.1249/JES.0000000000000116
  • Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature. 2009 Apr 30;458(7242):1131–1135. doi: 10.1038/nature07976
  • Wang X, Zhang X, Chu ESH, et al. Defective lysosomal clearance of autophagosomes and its clinical implications in nonalcoholic steatohepatitis. FASEB J. 2018 Jan;32(1):37–51. doi: 10.1096/fj.201601393R
  • Shibata M, Yoshimura K, Furuya N, et al. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem Biophys Res Commun. 2009 May 1;382(2):419–423. doi: 10.1016/j.bbrc.2009.03.039
  • Yang L, Li P, Fu S, et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010 Jun 9;11(6):467–478. doi: 10.1016/j.cmet.2010.04.005
  • Byun S, Seok S, Kim YC, et al. Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase. Nat Commun. 2020 Feb 10;11(1):807. doi: 10.1038/s41467-020-14384-z
  • Fernandez AF, Barcena C, Martinez-Garcia GG, et al. Autophagy couteracts weight gain, lipotoxicity and pancreatic beta-cell death upon hypercaloric pro-diabetic regimens. Cell Death Dis. 2017 Aug 3;8(8):e2970. doi: 10.1038/cddis.2017.373
  • Xiong X, Tao R, DePinho RA, et al. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J Biol Chem. 2012 Nov 9;287(46):39107–39114. doi: 10.1074/jbc.M112.412569
  • Lee DH, Park JS, Lee YS, et al. SQSTM1/p62 activates NFE2L2/NRF2 via ULK1-mediated autophagic KEAP1 degradation and protects mouse liver from lipotoxicity. Autophagy. 2020 Nov;16(11):1949–1973. doi: 10.1080/15548627.2020.1712108
  • Settembre C, De Cegli R, Mansueto G, et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol. 2013 Jun;15(6):647–658. doi: 10.1038/ncb2718
  • Li L, Hai J, Li Z, et al. Resveratrol modulates autophagy and NF-kappaB activity in a murine model for treating non-alcoholic fatty liver disease. Food Chem Toxicol. 2014 Jan;63:166–173.
  • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011 Nov 11;147(4):728–741.
  • Ma D, Molusky MM, Song J, et al. Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Mol Endocrinol. 2013 Oct;27(10):1643–1654. doi: 10.1210/me.2013-1153
  • Saito T, Kuma A, Sugiura Y, et al. Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nat Commun. 2019 Apr 5;10(1):1567. doi: 10.1038/s41467-019-08829-3
  • Matsunaga K, Saitoh T, Tabata K, et al. Two beclin 1-binding proteins, Atg14L and rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 2009 Apr;11(4):385–396. doi: 10.1038/ncb1846
  • Zhong Y, Wang QJ, Li X, et al. Distinct regulation of autophagic activity by Atg14L and rubicon associated with beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol. 2009 Apr;11(4):468–476. doi: 10.1038/ncb1854
  • Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998 Apr;114(4):842–845. doi: 10.1016/S0016-5085(98)70599-2
  • Lee J, Park JS, Roh YS. Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease. Arch Pharm Res. 2019 Nov;42(11):935–946. doi: 10.1007/s12272-019-01178-1
  • Zhang Z, Qian Q, Li M, et al. The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB. Autophagy. 2021 Aug;17(8):1841–1855. doi: 10.1080/15548627.2020.1788889
  • Qian Q, Zhang Z, Li M, et al. Hepatic lysosomal iNOS Activity impairs autophagy in obesity. Cell Mol Gastroenterol Hepatol. 2019;8(1):95–110. doi: 10.1016/j.jcmgh.2019.03.005
  • Park HW, Park H, Semple IA, et al. Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers. Nat Commun. 2014 Sep 5;5(1):4834. doi: 10.1038/ncomms5834
  • Kim YS, Kim SG. Endoplasmic reticulum stress and autophagy dysregulation in alcoholic and non-alcoholic liver diseases. Clin Mol Hepatol. 2020 Oct;26(4):715–727. doi: 10.3350/cmh.2020.0173
  • Lebeaupin C, Vallee D, Hazari Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018 Oct;69(4):927–947. doi: 10.1016/j.jhep.2018.06.008
  • Miyagawa K, Oe S, Honma Y, et al. Lipid-induced endoplasmic reticulum stress impairs selective autophagy at the step of autophagosome-lysosome fusion in hepatocytes. Am J Pathol. 2016 Jul;186(7):1861–1873. doi: 10.1016/j.ajpath.2016.03.003
  • Koga H, Kaushik S, Cuervo AM. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 2010 Aug;24(8):3052–3065. doi: 10.1096/fj.09-144519
  • Hsu P, Shi Y. Regulation of autophagy by mitochondrial phospholipids in health and diseases. Biochim Biophys Acta, Mol Cell Biol Lipids. 2017 Jan;1862(1):114–129. doi: 10.1016/j.bbalip.2016.08.003
  • Soto-Avellaneda A, Morrison BE. Signaling and other functions of lipids in autophagy: a review. Lipids Health Dis. 2020 Sep 30;19(1):214.
  • Song S, Tan J, Miao Y, et al. Crosstalk of autophagy and apoptosis: involvement of the dual role of autophagy under ER stress. J Cell Physiol. 2017 Nov;232(11):2977–2984. doi: 10.1002/jcp.25785
  • Glick D, Zhang W, Beaton M, et al. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol. 2012 Jul;32(13):2570–2584. doi: 10.1128/MCB.00167-12
  • Ma X, McKeen T, Zhang J, et al. Role and mechanisms of mitophagy in liver diseases. Cells. 2020 Mar 31;9(4):837. doi: 10.3390/cells9040837
  • Tran NKS, Kim GT, Park SH, et al. Fermented cordyceps militaris extract prevents hepatosteatosis and adipocyte hypertrophy in high fat diet-fed mice. Nutrients. 2019 May 6;11(5):1015. doi: 10.3390/nu11051015
  • Onal G, Kutlu O, Gozuacik D, et al. Lipid droplets in health and disease. Lipids Health Dis. 2017 Jun 29;16(1):128. doi: 10.1186/s12944-017-0521-7
  • Kwanten WJ, Martinet W, Michielsen PP, et al. Role of autophagy in the pathophysiology of nonalcoholic fatty liver disease: a controversial issue. World J Gastroenterol. 2014 Jun 21;20(23):7325–7338. doi: 10.3748/wjg.v20.i23.7325
  • Zechner R, Madeo F, Kratky D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol. 2017 Nov;18(11):671–684. doi: 10.1038/nrm.2017.76
  • Ueno T, Komatsu M. Autophagy in the liver: functions in health and disease. Nat Rev Gastroenterol Hepatol. 2017 Mar;14(3):170–184. doi: 10.1038/nrgastro.2016.185
  • Carotti S, Aquilano K, Zalfa F, et al. Lipophagy impairment is associated with disease progression in NAFLD. Front Physiol. 2020;11:850. doi: 10.3389/fphys.2020.00850
  • Schulze RJ, Drizyte K, Casey CA, et al. Hepatic lipophagy: new insights into autophagic catabolism of lipid droplets in the liver. Hepatol Commun. 2017 Jul;1(5):359–369. doi: 10.1002/hep4.1056
  • Schott MB, Weller SG, Schulze RJ, et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J Cell Bio. 2019 Oct 7;218(10):3320–3335. doi: 10.1083/jcb.201803153
  • Li S, Tan HY, Wang N, et al. The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxid Med Cell Longev. 2018;2018:8394818. doi: 10.1155/2018/8394818
  • Zhang Z, Yao Z, Chen Y, et al. Lipophagy and liver disease: new perspectives to better understanding and therapy. Biomed Pharmacother. 2018 Jan;97:339–348.
  • Pang L, Liu K, Liu D, et al. Differential effects of reticulophagy and mitophagy on nonalcoholic fatty liver disease. Cell Death Dis. 2018 Jan 24;9(2):90. doi: 10.1038/s41419-017-0136-y
  • He J, Ding J, Lai Q, et al. Irbesartan ameliorates lipid deposition by Enhancing autophagy via PKC/AMPK/ULK1 axis in free fatty acid induced hepatocytes. Front Physiol. 2019;10:681. doi: 10.3389/fphys.2019.00681
  • Velikkakath AK, Nishimura T, Oita E, et al. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol Biol Cell. 2012 Mar;23(5):896–909. doi: 10.1091/mbc.e11-09-0785
  • Pfisterer SG, Bakula D, Frickey T, et al. Lipid droplet and early autophagosomal membrane targeting of Atg2A and Atg14L in human tumor cells. J Lipid Res. 2014 Jul;55(7):1267–1278. doi: 10.1194/jlr.M046359
  • Ma SY, Sun KS, Zhang M, et al. Disruption of Plin5 degradation by CMA causes lipid homeostasis imbalance in NAFLD. Liver Int. 2020 Oct;40(10):2427–2438. doi: 10.1111/liv.14492
  • Garcia-Macia M, Santos-Ledo A, Leslie J, et al. A mammalian target of rapamycin-perilipin 3 (mTORC1-Plin3) pathway is essential to activate lipophagy and protects against hepatosteatosis. Hepatology. 2021 Dec;74(6):3441–3459. doi: 10.1002/hep.32048
  • Ao X, Zou L, Wu Y. Regulation of autophagy by the rab GTPase network. Cell Death Differ. 2014 Mar;21(3):348–358. doi: 10.1038/cdd.2013.187
  • Hyttinen JM, Niittykoski M, Salminen A, et al. Maturation of autophagosomes and endosomes: a key role for Rab7. Biochim Biophys Acta. 2013 Mar;1833(3):503–510. doi: 10.1016/j.bbamcr.2012.11.018
  • Guerra F, Bucci C. Multiple roles of the small GTPase Rab7. Cells. 2016 Aug 18;5(3):34.
  • Schroeder B, Schulze RJ, Weller SG, et al. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology. 2015 Jun;61(6):1896–1907. doi: 10.1002/hep.27667
  • Pu M, Zheng W, Zhang H, et al. ORP8 acts as a lipophagy receptor to mediate lipid droplet turnover. Protein & Cell. 2022; doi:10.1093/procel/pwac063
  • Li HY, Peng ZG. Targeting lipophagy as a potential therapeutic strategy for nonalcoholic fatty liver disease. Biochem Pharmacol. 2022 Mar;197:114933. doi: 10.1016/j.bcp.2022.114933
  • Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol. 2017 Dec;13(12):710–730. doi: 10.1038/nrendo.2017.91
  • Zhou Y, Zhong L, Yu S, et al. Inhibition of stearoyl-coenzyme a desaturase 1 ameliorates hepatic steatosis by inducing AMPK-mediated lipophagy. Aging. 2020 Apr 23;12(8):7350–7362. doi: 10.18632/aging.103082
  • Lettieri Barbato D, Tatulli G, Aquilano K, et al. FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis. 2013 Oct 17;4(10):e861. doi: 10.1038/cddis.2013.404
  • Filali-Mouncef Y, Hunter C, Roccio F, et al. The menage a trois of autophagy, lipid droplets and liver disease. Autophagy. 2022 Jan;18(1):50–72. doi: 10.1080/15548627.2021.1895658
  • Weiskirchen R, Tacke F. Relevance of autophagy in parenchymal and non-parenchymal liver cells for health and disease. Cells. 2019 Jan 1;8(1):16.
  • Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications. Mol Aspects Med. 2019 Feb;65:2–15. doi: 10.1016/j.mam.2018.06.003
  • Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017 Jul;14(7):397–411. doi: 10.1038/nrgastro.2017.38
  • Hernandez-Gea V, Friedman SL. Autophagy fuels tissue fibrogenesis. Autophagy. 2012 May 1;8(5):849–850.
  • Bobowski-Gerard M, Zummo FP, Staels B, et al. Retinoids issued from hepatic stellate cell lipid droplet loss as potential signaling molecules orchestrating a multicellular liver injury response. Cells. 2018 Sep 13;7(9):137. doi: 10.3390/cells7090137
  • Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology. 2012 Apr;142(4):938–946. doi: 10.1053/j.gastro.2011.12.044
  • Thoen LF, Guimaraes EL, Dolle L, et al. A role for autophagy during hepatic stellate cell activation. J Hepatol. 2011 Dec;55(6):1353–1360. doi: 10.1016/j.jhep.2011.07.010
  • Mallat A, Lodder J, Teixeira-Clerc F, et al. Autophagy: a multifaceted partner in liver fibrosis. Biomed Res Int. 2014;2014:869390. doi: 10.1155/2014/869390
  • Hong Y, Li S, Wang J, et al. In vitro inhibition of hepatic stellate cell activation by the autophagy-related lipid droplet protein ATG2A. Sci Rep. 2018 Jun 18;8(1):9232. doi: 10.1038/s41598-018-27686-6
  • Hernandez-Gea V, Hilscher M, Rozenfeld R, et al. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J Hepatol. 2013 Jul;59(1):98–104. doi: 10.1016/j.jhep.2013.02.016
  • Kim KM, Han CY, Kim JY, et al. Galpha(12) overexpression induced by miR-16 dysregulation contributes to liver fibrosis by promoting autophagy in hepatic stellate cells. J Hepatol. 2018 Mar;68(3):493–504. doi: 10.1016/j.jhep.2017.10.011
  • Meng D, Li Z, Wang G, et al. Carvedilol attenuates liver fibrosis by suppressing autophagy and promoting apoptosis in hepatic stellate cells. Biomed Pharmacother. 2018 Dec;108:1617–1627.
  • Zhang XL, Chen ZN, Huang QF, et al. Methyl helicterate inhibits hepatic stellate Cell activation through modulation of apoptosis and autophagy. Cell Physiol Biochem. 2018;51(2):897–908. doi: 10.1159/000495390
  • Li Y, Chen Y, Huang H, et al. Autophagy mediated by endoplasmic reticulum stress enhances the caffeine-induced apoptosis of hepatic stellate cells. Int J Mol Med. 2017 Nov;40(5):1405–1414. doi: 10.3892/ijmm.2017.3145
  • Gao J, Wei B, de Assuncao TM, et al. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol. 2020 Nov;73(5):1144–1154. doi: 10.1016/j.jhep.2020.04.044
  • Zhang XW, Zhou JC, Peng D, et al. Disrupting the TRIB3-SQSTM1 interaction reduces liver fibrosis by restoring autophagy and suppressing exosome-mediated HSC activation. Autophagy. 2020 May;16(5):782–796. doi: 10.1080/15548627.2019.1635383
  • Yang N, Shi JJ, Wu FP, et al. Caffeic acid phenethyl ester up-regulates antioxidant levels in hepatic stellate cell line T6 via an Nrf2-mediated mitogen activated protein kinases pathway. World J Gastroenterol. 2017 Feb 21;23(7):1203–1214. doi: 10.3748/wjg.v23.i7.1203
  • Chen W, Zhang Z, Yao Z, et al. Activation of autophagy is required for oroxylin a to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. Int Immunopharmacol. 2018 Mar;56:148–155.
  • Kazankov K, Jorgensen SMD, Thomsen KL, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019 Mar;16(3):145–159. doi: 10.1038/s41575-018-0082-x
  • Wang X, de Carvalho Ribeiro M, Iracheta-Vellve A, et al. Macrophage-specific hypoxia-inducible factor-1alpha contributes to impaired autophagic flux in nonalcoholic steatohepatitis. Hepatology. 2019 Feb;69(2):545–563. doi: 10.1002/hep.30215
  • Liu K, Zhao E, Ilyas G, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11(2):271–284. doi: 10.1080/15548627.2015.1009787
  • Lodder J, Denaes T, Chobert MN, et al. Macrophage autophagy protects against liver fibrosis in mice. Autophagy. 2015;11(8):1280–1292. doi: 10.1080/15548627.2015.1058473
  • Poisson J, Lemoinne S, Boulanger C, et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol. 2017 Jan;66(1):212–227. doi: 10.1016/j.jhep.2016.07.009
  • Hammoutene A, Biquard L, Lasselin J, et al. A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. J Hepatol. 2020 Mar;72(3):528–538. doi: 10.1016/j.jhep.2019.10.028
  • Ruart M, Chavarria L, Camprecios G, et al. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol. 2019 Mar;70(3):458–469. doi: 10.1016/j.jhep.2018.10.015
  • Luo X, Wang D, Zhu X, et al. Autophagic degradation of caveolin-1 promotes liver sinusoidal endothelial cells defenestration. Cell Death Dis. 2018 May 1;9(5):576. doi: 10.1038/s41419-018-0567-0
  • Hung TM, Hsiao CC, Lin CW, et al. Complex Cell type-specific roles of autophagy in liver fibrosis and cirrhosis. Pathogens. 2020 Mar 18;9(3):225. doi: 10.3390/pathogens9030225
  • Wong MH, Xue A, Baxter RC, et al. Upstream and downstream co-inhibition of mitogen-activated protein kinase and PI3K/Akt/mTOR Pathways in pancreatic ductal adenocarcinoma. Neoplasia. 2016 Jul;18(7):425–435. doi: 10.1016/j.neo.2016.06.001
  • Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017 Apr 6;169(2):361–371.
  • Zhou X, Fouda S, Zeng XY, et al. Characterization of the therapeutic profile of albiflorin for the metabolic syndrome. Front Pharmacol. 2019;10:1151. doi: 10.3389/fphar.2019.01151
  • Kim DH, Sarbassov DD, Ali SM, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 2003 Apr;11(4):895–904. doi: 10.1016/S1097-2765(03)00114-X
  • Sancak Y, Thoreen CC, Peterson TR, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007 Mar 23;25(6):903–915. doi: 10.1016/j.molcel.2007.03.003
  • Peterson TR, Laplante M, Thoreen CC, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009 May 29;137(5):873–886. doi: 10.1016/j.cell.2009.03.046
  • Yang H, Rudge DG, Koos JD, et al. mTOR kinase structure, mechanism and regulation. Nature. 2013 May 9;497(7448):217–223. doi: 10.1038/nature12122
  • Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):251–262.
  • Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003 Nov 26;115(5):577–590.
  • Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008 Apr 25;30(2):214–226. doi: 10.1016/j.molcel.2008.03.003
  • Egan D, Kim J, Shaw RJ, et al. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy. 2011 Jun;7(6):643–644. doi: 10.4161/auto.7.6.15123
  • Kim J, Guan KL. Regulation of the autophagy initiating kinase ULK1 by nutrients: roles of mTORC1 and AMPK. Cell Cycle. 2011 May 1;10(9):1337–1338.
  • Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011 Feb;13(2):132–141. doi: 10.1038/ncb2152
  • Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009 Apr;20(7):1981–1991. doi: 10.1091/mbc.e08-12-1248
  • Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009 Apr;20(7):1992–2003. doi: 10.1091/mbc.e08-12-1249
  • Nazio F, Strappazzon F, Antonioli M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 2013 Apr;15(4):406–416. doi: 10.1038/ncb2708
  • Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014 Mar;15(3):155–162. doi: 10.1038/nrm3757
  • Yuan HX, Russell RC, Guan KL. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy. 2013 Dec;9(12):1983–1995. doi: 10.4161/auto.26058
  • Martina JA, Chen Y, Gucek M, et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012 Jun;8(6):903–914. doi: 10.4161/auto.19653
  • Roczniak-Ferguson A, Petit CS, Froehlich F, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012 Jun 12;5(228):ra42. doi: 10.1126/scisignal.2002790
  • Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011 Jun 17;332(6036):1429–1433. doi: 10.1126/science.1204592
  • Weerasekara VK, Panek DJ, Broadbent DG, et al. Metabolic-stress-induced rearrangement of the 14-3-3zeta interactome promotes autophagy via a ULK1- and AMPK-regulated 14-3-3zeta interaction with phosphorylated Atg9. Mol Cell Biol. 2014 Dec;34(24):4379–4388. doi: 10.1128/MCB.00740-14
  • Kim J, Kim YC, Fang C, et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 2013 Jan 17;152(1–2):290–303. doi: 10.1016/j.cell.2012.12.016
  • Zhang D, Wang W, Sun X, et al. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy. 2016 Sep;12(9):1447–1459. doi: 10.1080/15548627.2016.1185576
  • Wang Y, Shi M, Fu H, et al. Mammalian target of the rapamycin pathway is involved in non-alcoholic fatty liver disease. Mol Med Rep. 2010 Nov-Dec;3(6):909–915. doi: 10.3892/mmr.2010.365
  • Smith BK, Marcinko K, Desjardins EM, et al. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab. 2016 Oct 1;311(4):E730–E740. doi: 10.1152/ajpendo.00225.2016
  • Carroll B, Dunlop EA. The lysosome: a crucial hub for AMPK and mTORC1 signalling. Biochem J. 2017 Apr 13;474(9):1453–1466.
  • Ezquerro S, Mendez-Gimenez L, Becerril S, et al. Acylated and desacyl ghrelin are associated with hepatic lipogenesis, β-oxidation and autophagy: role in NAFLD amelioration after sleeve gastrectomy in obese rats. Sci Rep. 2016 Dec 23;6(1):39942. doi: 10.1038/srep39942
  • Ma N, Ma R, Tang K, et al. Roux-en-Y gastric bypass in obese diabetic rats promotes autophagy to improve lipid metabolism through mTor/p70s6k signaling pathway. J Diabetes Res. 2020;2020:4326549. doi: 10.1155/2020/4326549
  • Shi C, Xue W, Han B, et al. Acetaminophen aggravates fat accumulation in NAFLD by inhibiting autophagy via the AMPK/mTOR pathway. Eur J Pharmacol. 2019 May 5;850:15–22.
  • Zhang P, Cheng X, Sun H, et al. Atractyloside protect mice against liver steatosis by activation of autophagy via ANT-AMPK-mTORC1 signaling pathway. Front Pharmacol. 2021;12:736655. doi: 10.3389/fphar.2021.736655
  • Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, et al. Empagliflozin attenuates non-alcoholic fatty liver disease (NAFLD) in high fat diet fed ApoE((-/-)) mice by activating autophagy and Reducing ER stress and apoptosis. IJMS. 2021 Jan 15;22(2):818. doi: 10.3390/ijms22020818
  • Zhang S, Mao Y, Fan X. Inhibition of ghrelin o-acyltransferase attenuated lipotoxicity by inducing autophagy via AMPK-mTOR pathway. Drug Des Devel Ther. 2018;12:873–885. doi: 10.2147/DDDT.S158985
  • Sun L, Zhang S, Yu C, et al. Hydrogen sulfide reduces serum triglyceride by activating liver autophagy via the AMPK-mTOR pathway. Am J Physiol Endocrinol Metab. 2015 Dec 1;309(11):E925–35. doi: 10.1152/ajpendo.00294.2015
  • Huang R, Xu Y, Wan W, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell. 2015 Feb 5;57(3):456–466. doi: 10.1016/j.molcel.2014.12.013
  • Wan W, You Z, Xu Y, et al. mTORC1 phosphorylatEs acetyltransferase p300 to regulate autophagy and lipogenesis. Mol Cell. 2017 Oct 19;68(2):323–335 e6. doi: 10.1016/j.molcel.2017.09.020
  • Wan W, You Z, Zhou L, et al. mTORC1-regulated and HUWE1-mediated WIPI2 degradation controls autophagy flux. Mol Cell. 2018 Oct 18;72(2):303–315 e6. doi: 10.1016/j.molcel.2018.09.017
  • Kim YM, Jung CH, Seo M, et al. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol Cell. 2015 Jan 22;57(2):207–218. doi: 10.1016/j.molcel.2014.11.013
  • Liang C, Lee JS, Inn KS, et al. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol. 2008 Jul;10(7):776–787. doi: 10.1038/ncb1740
  • He S, Ni D, Ma B, et al. PtdIns(3)P-bound UVRAG coordinates Golgi-ER retrograde and Atg9 transport by differential interactions with the ER tether and the beclin 1 complex. Nat Cell Biol. 2013 Oct;15(10):1206–1219. doi: 10.1038/ncb2848
  • He A, Chen X, Tan M, et al. Acetyl-CoA derived from hepatic peroxisomal beta-oxidation inhibits autophagy and promotes steatosis via mTORC1 activation. Mol Cell. 2020 Jul 2;79(1):30–42 e4. doi: 10.1016/j.molcel.2020.05.007
  • Qian Q, Zhang Z, Orwig A, et al. S-Nitrosoglutathione reductase dysfunction contributes to obesity-associated hepatic insulin resistance via regulating autophagy. Diabetes. 2018 Feb;67(2):193–207. doi: 10.2337/db17-0223
  • Guo R, Nair S, Zhang Y, et al. RETRACTED ARTICLE: adiponectin deficiency rescues high-fat diet-induced hepatic injury, apoptosis and autophagy loss despite persistent steatosis. Int J Obes (Lond). 2017 Sep;41(9):1403–1412. doi: 10.1038/ijo.2017.128
  • Han HS, Kim SG, Kim YS, et al. A novel role of CRTC2 in promoting nonalcoholic fatty liver disease. Mol Metab. 2022 Jan;55:101402.
  • Kim BM, Kim DH, Park YJ, et al. PAR2 promotes high-fat diet-induced hepatic steatosis by inhibiting AMPK-mediated autophagy. J Nutr Biochem. 2021 Sep;95:108769.
  • Cruces-Sande M, Vila-Bedmar R, Arcones AC, et al. Involvement of G protein-coupled receptor kinase 2 (GRK2) in the development of non-alcoholic steatosis and steatohepatitis in mice and humans. Biochim Biophys Acta Mol Basis Dis. 2018 Dec;1864(12):3655–3667. doi: 10.1016/j.bbadis.2018.09.027
  • Zhou W, Deng X, Zhu X, et al. HtrA2/Omi mitigates NAFLD in high-fat-fed mice by ameliorating mitochondrial dysfunction and restoring autophagic flux. Cell Death Discov. 2022 Apr 21;8(1):218. doi: 10.1038/s41420-022-01022-4
  • Challa TD, Wueest S, Lucchini FC, et al. Liver ASK1 protects from non-alcoholic fatty liver disease and fibrosis. EMBO Mol Med. 2019 Oct;11(10):e10124. doi: 10.15252/emmm.201810124
  • Zhou J, Singh BK, Ho JP, et al. MED1 mediator subunit is a key regulator of hepatic autophagy and lipid metabolism. Autophagy. 2021 Dec;17(12):4043–4061. doi: 10.1080/15548627.2021.1899691
  • Qiu S, Liang Z, Wu Q, et al. Hepatic lipid accumulation induced by a high-fat diet is regulated by Nrf2 through multiple pathways. FASEB J. 2022 May;36(5):e22280. doi: 10.1096/fj.202101456R
  • Sheldon RD, Meers GM, Morris EM, et al. eNOS deletion impairs mitochondrial quality control and exacerbates western diet-induced NASH. Am J Physiol Endocrinol Metab. 2019 Oct 1;317(4):E605–E616. doi: 10.1152/ajpendo.00096.2019
  • Kim YS, Nam HJ, Han CY, et al. Liver X receptor alpha activation inhibits autophagy and lipophagy in hepatocytes by dysregulating autophagy-related 4B cysteine peptidase and Rab-8B, Reducing mitochondrial fuel oxidation. Hepatology. 2021 Apr;73(4):1307–1326. doi: 10.1002/hep.31423
  • Griffin JD, Bejarano E, Wang XD, et al. Integrated action of autophagy and adipose tissue triglyceride lipase ameliorates diet-induced hepatic steatosis in liver-specific PLIN2 knockout mice. Cells. 2021 Apr 25;10(5):1016. doi: 10.3390/cells10051016
  • Cheng X, Ma X, Zhu Q, et al. Pacer is a mediator of mTORC1 and GSK3-TIP60 signaling in regulation of autophagosome maturation and lipid metabolism. Mol Cell. 2019 Feb 21;73(4):788–802 e7. doi: 10.1016/j.molcel.2018.12.017
  • Li S, Dou X, Ning H, et al. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology. 2017 Sep;66(3):936–952. doi: 10.1002/hep.29229
  • Li R, Xin T, Li D, et al. Therapeutic effect of sirtuin 3 on ameliorating nonalcoholic fatty liver disease: the role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biol. 2018 Sep;18:229–243.
  • Nguyen TTP, Kim DY, Lee YG, et al. SREBP-1c impairs ULK1 sulfhydration-mediated autophagic flux to promote hepatic steatosis in high-fat-diet-fed mice. Mol Cell. 2021 Sep 16;81(18):3820–3832 e7. doi: 10.1016/j.molcel.2021.06.003
  • Deng X, Pan X, Cheng C, et al. Regulation of SREBP-2 intracellular trafficking improves impaired autophagic flux and alleviates endoplasmic reticulum stress in NAFLD. Biochim Biophys Acta, Mol Cell Biol Lipids. 2017 Mar;1862(3):337–350. doi: 10.1016/j.bbalip.2016.12.007
  • Liu K, Qiu D, Liang X, et al. Lipotoxicity-induced STING1 activation stimulates MTORC1 and restricts hepatic lipophagy. Autophagy. 2022 Apr;18(4):860–876. doi: 10.1080/15548627.2021.1961072
  • Zhang X, Lin Y, Lin S, et al. Silencing of functional p53 attenuates NAFLD by promoting HMGB1-related autophagy induction. Hepatol Int. 2020 Sep;14(5):828–841. doi: 10.1007/s12072-020-10068-4
  • Jiang X, Fulte S, Deng F, et al. Lack of VMP1 impairs hepatic lipoprotein secretion and promotes non-alcoholic steatohepatitis. J Hepatol. 2022 Sep;77(3):619–631. doi: 10.1016/j.jhep.2022.04.010
  • Zhang H, Lu J, Liu H, et al. Ajugol enhances TFEB-mediated lysosome biogenesis and lipophagy to alleviate non-alcoholic fatty liver disease. Pharmacol Res. 2021 Dec;174:105964.
  • Zhou F, Ding M, Gu Y, et al. Aurantio-obtusin attenuates non-alcoholic fatty liver disease through AMPK-Mediated autophagy and fatty acid oxidation pathways. Front Pharmacol. 2021;12:826628. doi: 10.3389/fphar.2021.826628
  • Sharma A, Anand SK, Singh N, et al. Berbamine induced activation of the SIRT1/LKB1/AMPK signaling axis attenuates the development of hepatic steatosis in high-fat diet-induced NAFLD rats. Food Funct. 2021 Jan 21;12(2):892–909. doi: 10.1039/D0FO02501A
  • Sinha RA, Farah BL, Singh BK, et al. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology. 2014 Apr;59(4):1366–1380. doi: 10.1002/hep.26667
  • Lin CW, Zhang H, Li M, et al. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J Hepatol. 2013 May;58(5):993–999. doi: 10.1016/j.jhep.2013.01.011
  • Ren H, Wang D, Zhang L, et al. Catalpol induces autophagy and attenuates liver steatosis in ob/ob and high-fat diet-induced obese mice. Aging. 2019 Nov 7;11(21):9461–9477. doi: 10.18632/aging.102396
  • Lee GH, Lee HY, Park SA, et al. Eucommia ulmoides leaf extract ameliorates steatosis induced by high-fat diet in rats by increasing lysosomal function. Nutrients. 2019 Feb 18;11(2):426. doi: 10.3390/nu11020426
  • Yoo J, Jeong IK, Ahn KJ, et al. Fenofibrate, a PPARalpha agonist, reduces hepatic fat accumulation through the upregulation of TFEB-mediated lipophagy. Metabolism. 2021 Jul;120:154798.
  • Wang Y, Zhao H, Li X, et al. Formononetin alleviates hepatic steatosis by facilitating TFEB-mediated lysosome biogenesis and lipophagy. J Nutr Biochem. 2019 Nov;73:108214.
  • Fang Y, Ji L, Zhu C, et al. Liraglutide alleviates hepatic steatosis by activating the TFEB-Regulated autophagy-lysosomal pathway. Front Cell Dev Biol. 2020;8:602574. doi: 10.3389/fcell.2020.602574
  • Tong W, Ju L, Qiu M, et al. Liraglutide ameliorates non-alcoholic fatty liver disease by enhancing mitochondrial architecture and promoting autophagy through the SIRT1/SIRT3-FOXO3a pathway. Hepatol Res. 2016 Aug;46(9):933–943. doi: 10.1111/hepr.12634
  • Zhang D, Ma Y, Liu J, et al. Metformin alleviates hepatic steatosis and insulin resistance in a mouse model of high-fat diet-induced nonalcoholic fatty liver disease by promoting transcription factor EB-Dependent autophagy. Front Pharmacol. 2021;12:689111. doi: 10.3389/fphar.2021.689111
  • Yang Y, Wu Y, Zou J, et al. Naringenin attenuates non-alcoholic fatty liver disease by Enhancing energy expenditure and regulating autophagy via AMPK. Front Pharmacol. 2021;12:687095. doi: 10.3389/fphar.2021.687095
  • Du X, Di Malta C, Fang Z, et al. Nuciferine protects against high-fat diet-induced hepatic steatosis and insulin resistance via activating TFEB-mediated autophagy-lysosomal pathway. Acta Pharm Sin B. 2022 Jun;12(6):2869–2886. doi: 10.1016/j.apsb.2021.12.012
  • Zhou W, Yan X, Zhai Y, et al. Phillygenin ameliorates nonalcoholic fatty liver disease via TFEB-mediated lysosome biogenesis and lipophagy. Phytomedicine. 2022 Aug;103:154235.
  • Wang C, Yan Y, Hu L, et al. Rapamycin-mediated CD36 translational suppression contributes to alleviation of hepatic steatosis. Biochem Biophys Res Commun. 2014 Apr 25;447(1):57–63. doi: 10.1016/j.bbrc.2014.03.103
  • Zhao R, Zhu M, Zhou S, et al. Rapamycin-loaded mPEG-PLGA nanoparticles ameliorate hepatic steatosis and liver injury in non-alcoholic fatty liver disease. Front Chem. 2020;8:407. doi: 10.3389/fchem.2020.00407
  • Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu Rev Immunol. 1996;14(1):483–510. doi: 10.1146/annurev.immunol.14.1.483
  • Peterson RT, Beal PA, Comb MJ, et al. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem. 2000 Mar 10;275(10):7416–7423. doi: 10.1074/jbc.275.10.7416
  • Paschoal VA, Amano MT, Belchior T, et al. mTORC1 inhibition with rapamycin exacerbates adipose tissue inflammation in obese mice and dissociates macrophage phenotype from function. Immunobiology. 2017 Feb;222(2):261–271. doi: 10.1016/j.imbio.2016.09.014
  • Wang Y, He Z, Li X. Chronic rapamycin treatment improved metabolic phenotype but inhibited adipose tissue browning in high-fat diet-fed C57BL/6J mice. Biol Pharm Bull. 2017;40(9):1352–1360. doi: 10.1248/bpb.b16-00946
  • Zagkou S, Marais V, Zeghoudi N, et al. Design and evaluation of autophagy-inducing particles for the treatment of abnormal lipid accumulation. Pharmaceutics. 2022 Jun 29;14(7):1379. doi: 10.3390/pharmaceutics14071379
  • Zhou HY, Huang SL. Current development of the second generation of mTOR inhibitors as anticancer agents. Chin J Cancer. 2012 Jan;31(1):8–18. doi: 10.5732/cjc.011.10281
  • Patel DK, Stanford FC. Safety and tolerability of new-generation anti-obesity medications: a narrative review. Postgrad Med. 2018 Mar;130(2):173–182. doi: 10.1080/00325481.2018.1435129
  • Kim KH, Jeong YT, Oh H, et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med. 2013 Jan;19(1):83–92. doi: 10.1038/nm.3014
  • Li Y, Chao X, Yang L, et al. Impaired fasting-induced adaptive lipid droplet biogenesis in liver-specific Atg5-deficient mouse liver is mediated by persistent nuclear factor-like 2 activation. Am J Pathol. 2018 Aug;188(8):1833–1846. doi: 10.1016/j.ajpath.2018.04.015
  • Takahashi SS, Sou YS, Saito T, et al. Loss of autophagy impairs physiological steatosis by accumulation of NCoR1. Life Sci Alliance. 2020 Jan;3(1):e201900513. doi: 10.26508/lsa.201900513
  • Ding WX, Ni HM, Waguri S, et al. Lack of hepatic autophagy promotes severity of liver injury but not steatosis. J Hepatol. 2022 Nov;77(5):1458–1459. doi: 10.1016/j.jhep.2022.05.015
  • Takagi A, Kume S, Kondo M, et al. Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation. Sci Rep. 2016 Jan 6;6(1):18944. doi: 10.1038/srep18944
  • Heckmann BL, Boada-Romero E, Cunha LD, et al. LC3-associated phagocytosis and inflammation. J Mol Biol. 2017 Nov 24;429(23):3561–3576. doi: 10.1016/j.jmb.2017.08.012
  • Sil P, Muse G, Martinez J. A ravenous defense: canonical and non-canonical autophagy in immunity. Curr Opin Immunol. 2018 Feb;50:21–31. doi: 10.1016/j.coi.2017.10.004
  • Wan J, Weiss E, Ben Mkaddem S, et al. LC3-associated phagocytosis protects against inflammation and liver fibrosis via immunoreceptor inhibitory signaling. Sci Transl Med. 2020 Apr 15;12(539): doi: 10.1126/scitranslmed.aaw8523
  • Wan J, Weiss E, Ben Mkaddem S, et al. LC3-associated phagocytosis in myeloid cells, a fireman that restrains inflammation and liver fibrosis, via immunoreceptor inhibitory signaling. Autophagy. 2020 Aug;16(8):1526–1528. doi: 10.1080/15548627.2020.1770979
  • Zhang Y, Sowers JR, Ren J. Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol. 2018 Jun;14(6):356–376. doi: 10.1038/s41574-018-0009-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.