532
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

BAG3 regulates the specificity of the recognition of specific MAPT species by NBR1 and SQSTM1

, , , , & ORCID Icon
Pages 577-589 | Received 08 Feb 2023, Accepted 19 Oct 2023, Published online: 08 Nov 2023

References

  • Qiang L, Sun X, Austin TO, et al. Tau does not stabilize axonal microtubules but rather enables them to have long labile domains. Curr Biol. 2018 Jul 9;28(13):2181–2189 e4. doi: 10.1016/j.cub.2018.05.045
  • Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, et al. It’s all about tau. Prog Neurobiol. 2019 Apr;175:54–76.
  • Sahara N, Maeda S, Murayama M, et al. Assembly of two distinct dimers and higher-order oligomers from full-length tau. Eur J Neurosci. 2007 May;25(10):3020–3029. doi: 10.1111/j.1460-9568.2007.05555.x
  • Maeda S, Sahara N, Saito Y, et al. Granular tau oligomers as intermediates of tau filaments. Biochemistry. 2007 Mar 27;46(12):3856–3861. doi: 10.1021/bi061359o
  • Spires TL, Orne JD, SantaCruz K, et al. Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am J Pathol. 2006 May;168(5):1598–1607. doi: 10.2353/ajpath.2006.050840
  • Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, et al. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener. 2011 Jun 6;6(1):39. doi: 10.1186/1750-1326-6-39
  • Li Q, Liu Y, Sun M. Autophagy and Alzheimer’s Disease. Cell Mol Neurobiol. 2017 Apr;37(3):377–388. doi: 10.1007/s10571-016-0386-8
  • Kirkin V, Rogov VV. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol Cell. 2019 Oct 17;76(2):268–285. doi: 10.1016/j.molcel.2019.09.005
  • Svenning S, Lamark T, Krause K, et al. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy. 2011 Sep;7(9):993–1010. doi: 10.4161/auto.7.9.16389
  • Xu Y, Zhang S, Zheng H. The cargo receptor SQSTM1 ameliorates neurofibrillary tangle pathology and spreading through selective targeting of pathological MAPT (microtubule associated protein tau). Autophagy. 2019 Apr;15(4):583–598. doi: 10.1080/15548627.2018.1532258
  • Behl C. Breaking BAG: the co-chaperone BAG3 in health and disease. Trends Pharmacol Sci. 2016 Aug;37(8):672–688. doi: 10.1016/j.tips.2016.04.007
  • Lin H, Koren SA, Cvetojevic G, et al. The role of BAG3 in health and disease: a “magic BAG of tricks”. J Cell Biochem. 2022 Jan;123(1):4–21. doi: 10.1002/jcb.29952
  • Chakraborty D, Felzen V, Hiebel C, et al. Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress. Redox Biol. 2019 Jun;24:101181.
  • Sturner E, Behl C. The role of the multifunctional BAG3 protein in cellular protein quality control and in disease. Front Mol Neurosci. 2017;10:177. doi: 10.3389/fnmol.2017.00177
  • Fu H, Possenti A, Freer R, et al. A tau homeostasis signature is linked with the cellular and regional vulnerability of excitatory neurons to tau pathology. Nat Neurosci. 2019 Jan;22(1):47–56. doi: 10.1038/s41593-018-0298-7
  • Lei Z, Brizzee C, Johnson GV. BAG3 facilitates the clearance of endogenous tau in primary neurons. Neurobiol Aging. 2015 Jan;36(1):241–248. doi: 10.1016/j.neurobiolaging.2014.08.012
  • Ji C, Tang M, Zeidler C, et al. BAG3 and SYNPO (synaptopodin) facilitate phospho-MAPT/Tau degradation via autophagy in neuronal processes. Autophagy. 2019 Jul;15(7):1199–1213. doi: 10.1080/15548627.2019.1580096
  • Biernat J, Gustke N, Drewes G, et al. Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron. 1993 Jul;11(1):153–163. doi: 10.1016/0896-6273(93)90279-Z
  • Cho JH, Johnson GV. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau’s ability to bind and stabilize microtubules. J Neurochem. 2004 Jan;88(2):349–358. doi: 10.1111/j.1471-4159.2004.02155.x
  • Augustinack JC, Schneider A, Mandelkow EM, et al. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. 2002 Jan;103(1):26–35. doi: 10.1007/s004010100423
  • Luna-Munoz J, Garcia-Sierra F, Falcon V, et al. Regional conformational change involving phosphorylation of tau protein at the Thr231, precedes the structural change detected by alz-50 antibody in Alzheimer’s disease. J Alzheimers Dis. 2005 Sep;8(1):29–41. doi: 10.3233/JAD-2005-8104
  • Mondragon-Rodriguez S, Perry G, Luna-Munoz J, et al. Phosphorylation of tau protein at sites Ser(396-404) is one of the earliest events in Alzheimer’s disease and down syndrome. Neuropathol Appl Neurobiol. 2014 Feb;40(2):121–135. doi: 10.1111/nan.12084
  • Lin H, Tang M, Ji C, et al. BAG3 regulation of rab35 mediates the endosomal sorting complexes required for transport/endolysosome pathway and Tau Clearance. Biol Psychiatry. 2022 Jul 1;92(1):10–24. doi: 10.1016/j.biopsych.2021.10.024
  • Chen Y, Yang LN, Cheng L, et al. Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity. Mol & Cell Proteomics. 2013 Oct;12(10):2804–2819. doi: 10.1074/mcp.M112.025882
  • Rasmussen NL, Kournoutis A, Lamark T, et al. NBR1: the archetypal selective autophagy receptor. J Cell Bio. 2022 Nov 7;221(11). doi: 10.1083/jcb.202208092
  • Tak H, Haque MM, Kim MJ, et al. Bimolecular fluorescence complementation; lighting-up tau-tau interaction in living cells. PLoS One. 2013;8(12):e81682. doi: 10.1371/journal.pone.0081682
  • Patterson KR, Remmers C, Fu Y, et al. Characterization of prefibrillar Tau oligomers in vitro and in Alzheimer disease. J Biol Chem. 2011 Jul 1;286(26):23063–23076. doi: 10.1074/jbc.M111.237974
  • Fleming A, Bourdenx M, Fujimaki M, et al. The different autophagy degradation pathways and neurodegeneration. Neuron. 2022 Mar 16;110(6):935–966. doi: 10.1016/j.neuron.2022.01.017
  • Rubinsztein DC, DiFiglia M, Heintz N, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy. 2005 Apr;1(1):11–22. doi: 10.4161/auto.1.1.1513
  • Park H, Kang JH, Lee S. Autophagy in Neurodegenerative Diseases: A Hunter for Aggregates. Int J Mol Sci. 2020 May 10;21(9):3369. doi: 10.3390/ijms21093369
  • Nixon RA, Yang DS. Autophagy failure in Alzheimer’s disease–locating the primary defect. Neurobiol Dis. 2011 Jul;43(1):38–45. doi: 10.1016/j.nbd.2011.01.021
  • Di Meco A, Curtis ME, Lauretti E, et al. Autophagy dysfunction in Alzheimer’s disease: mechanistic insights and New therapeutic opportunities. Biol Psychiatry. 2020 May 1;87(9):797–807. doi: 10.1016/j.biopsych.2019.05.008
  • Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013 Aug;19(8):983–997. doi: 10.1038/nm.3232
  • Wang Y, Kruger U, Mandelkow E, et al. Generation of tau aggregates and clearance by autophagy in an inducible cell model of tauopathy. Neurodegener Dis. 2010;7(1–3):103–107. doi: 10.1159/000285516
  • Brunden KR, Trojanowski JQ, Lee VM. Evidence that non-fibrillar tau causes pathology linked to neurodegeneration and behavioral impairments. J Alzheimers Dis. 2008 Aug;14(4):393–399. doi: 10.3233/JAD-2008-14406
  • Jo C, Gundemir S, Pritchard S, et al. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun. 2014 Mar 25;5(1):3496. doi: 10.1038/ncomms4496
  • Xu Y, Liu Y, Chen X, et al. OPTN attenuates the neurotoxicity of abnormal tau protein by restoring autophagy. Transl Psychiatry. 2022 Jun 4;12(1):230. doi: 10.1038/s41398-022-02004-x
  • Ono M, Komatsu M, Ji B, et al. Central role for p62/SQSTM1 in the elimination of toxic tau species in a mouse model of tauopathy. Aging Cell. 2022 Jul;21(7):e13615. doi: 10.1111/acel.13615
  • Liu XM, Sun LL, Hu W, et al. Escrts cooperate with a selective autophagy receptor to mediate vacuolar targeting of soluble cargos. Mol Cell. 2015 Sep 17;59(6):1035–1042. doi: 10.1016/j.molcel.2015.07.034
  • Vaz-Silva J, Gomes P, Jin Q, et al. Endolysosomal degradation of tau and its role in glucocorticoid-driven hippocampal malfunction. EMBO J. 2018 Oct 15;37(20). doi: 10.15252/embj.201899084
  • Lo Cascio F, Garcia S, Montalbano M, et al. Modulating disease-relevant tau oligomeric strains by small molecules. J Biol Chem. 2020 Oct 30;295(44):14807–14825. doi: 10.1074/jbc.RA120.014630
  • Jiang L, Zhao J, Cheng JX, et al. Tau Oligomers and fibrils exhibit differential patterns of seeding and association with RNA binding proteins. Front Neurol. 2020;11:579434. doi: 10.3389/fneur.2020.579434
  • Lei Z, Brizzee C, Johnson GVW. BAG3 facilitates the clearance of endogenous tau in primary neurons.Neurobiol Aging. 2015 2015 Jan 1;36(1):241–248. doi: 10.1016/j.neurobiolaging.2014.08.012.
  • Cho JH, Johnson GV. Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding. J Biol Chem. 2003 Jan 3;278(1):187–193. doi: 10.1074/jbc.M206236200
  • Lin H, Tang M, Ji C. et al. BAG3 regulation of RAB35 mediates the endosomal sorting complexes required for transport/endolysosome pathway and Tau Clearance. Biol Psychiatry. 2021;92(1):10-24. doi: 10.1016/j.biopsych.2021.10.024
  • KrishnaKumar VG, Gupta S. Simplified method to obtain enhanced expression of tau protein from E. coli and one-step purification by direct boiling. Prep Biochem Biotechnol. 2017 May 28;47(5):530–538. doi: 10.1080/10826068.2016.1275012
  • Meister-Broekema M, Freilich R, Jagadeesan C, et al. Myopathy associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks. Nat Commun. 2018 Dec 17;9(1):5342. doi: 10.1038/s41467-018-07718-5
  • Aaron JS, Taylor AB, Chew TL. Image co-localization - co-occurrence versus correlation. J Cell Sci. 2018 Feb 8;131(3). doi: 10.1242/jcs.211847

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.