353
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Defective autophagy and autophagy activators in myasthenia gravis: a rare entity and unusual scenario

, , , , , , ORCID Icon & show all
Pages 1473-1482 | Received 30 Nov 2023, Accepted 02 Feb 2024, Published online: 06 Mar 2024

References

  • Dresser L, Wlodarski R, Rezania K, et al. Myasthenia gravis: epidemiology, pathophysiology and clinical manifestations. J Clin Med. 2021;10(11):2235. doi: 10.3390/jcm10112235
  • Lazaridis K, Tzartos SJ. Autoantibody specificities in myasthenia gravis; implications for improved diagnostics and therapeutics. Front Immunol. 2020;11:212. doi: 10.3389/fimmu.2020.00212
  • Ciafaloni E. Myasthenia gravis and congenital myasthenic syndromes. Contin Lifelong Learn Neurol. 2019;25(6):1767–1784. doi: 10.1212/CON.0000000000000800
  • Iijima S. Clinical and pathophysiologic relevance of autoantibodies in neonatal myasthenia gravis. Pediatr Neonatol. 2021;62(6):581–590. doi: 10.1016/j.pedneo.2021.05.020
  • Luchanok V, Kaminski HJ. 90Natural history of myasthenia gravis. In Myasthenia gravis and myasthenic disorders. Oxford University Press; 2012. doi: 10.1093/med/9780199738670.003.0004
  • Nguyen-Cao TM, Gelinas D, Griffin R, et al. Myasthenia gravis: historical achievements and the “golden age” of clinical trials. J Neurol Sci. 2019;406:116428. doi: 10.1016/j.jns.2019.116428
  • Catalin J, Silviana J, Claudia B. Clinical presentation of myasthenia gravis. London, (UK): Thymus Rezaei N InTechOpen; 2020. pp. 91–99.
  • Alanazy MH. Clinical features and outcomes of patients with myasthenia gravis. Neurosciences (Riyadh). 2019;24(3):176–184. doi: 10.17712/nsj.2019.3.20190011
  • Yildiz Celik S, Durmus H, Yilmaz V, et al. Late-onset generalized myasthenia gravis: clinical features, treatment, and outcome. Acta Neurol Belg. 2020;120(1):133–140. doi: 10.1007/s13760-019-01252-x
  • Evoli A, Iorio R. Controversies in ocular myasthenia gravis. Front Neurol. 2020;11:605902. doi: 10.3389/fneur.2020.605902
  • Hendricks TM, Bhatti MT, Hodge DO, et al. Incidence, epidemiology, and transformation of ocular myasthenia gravis: a population-based study. Am J Ophthalmol. 2019;205:99–105. doi: 10.1016/j.ajo.2019.04.017
  • Wong SH, Eggenberger E, Cornblath W, et al. Preliminary findings of a dedicated ocular myasthenia gravis rating scale: the OMGRate. Neuroophthalmology. 2020;44(3):148–156. doi: 10.1080/01658107.2019.1660686
  • Zhang C, Wang F, Long Z, et al. Mortality of myasthenia gravis: a national population-based study in China. Ann Clin Transl Neurol. 2023;10(7):1095–1105. doi: 10.1002/acn3.51792
  • Katz NK, Barohn RJ. The history of acetylcholinesterase inhibitors in the treatment of myasthenia gravis. Neuropharmacology. 2021;182:108303. doi: 10.1016/j.neuropharm.2020.108303
  • Bubuioc A-M, Kudebayeva A, Turuspekova S, et al. The epidemiology of myasthenia gravis. J Med Life. 2021;14(1):7. doi: 10.25122/jml-2020-0145
  • Salari N, Fatahi B, Bartina Y, et al. Global prevalence of myasthenia gravis and the effectiveness of common drugs in its treatment: a systematic review and meta-analysis. J Transl Med. 2021;19(1):1–23. doi: 10.1186/s12967-021-03185-7
  • Peragallo JH, Bitrian E, Kupersmith MJ, et al. Relationship between age, gender, and race in patients presenting with myasthenia gravis with only ocular manifestations. J Neuro-Ophthalmol. 2016;36(1):29–32. doi: 10.1097/WNO.0000000000000276
  • Tanovska N, Novotni G, Sazdova-Burneska S, et al. Myasthenia gravis and associated diseases. Open Access Maced J Med Sci. 2018;6(3):472. doi: 10.3889/oamjms.2018.110
  • Fichtner ML, Jiang R, Bourke A, et al. Autoimmune pathology in myasthenia gravis disease subtypes is governed by divergent mechanisms of immunopathology. Front Immunol. 2020;11:776. doi: 10.3389/fimmu.2020.00776
  • Borges LS, Richman DP. Muscle-specific kinase myasthenia gravis. Front Immunol. 2020;11:707. doi: 10.3389/fimmu.2020.00707
  • Ingelfinger F, Krishnarajah S, Kramer M, et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 2021;141(6):901–915. doi: 10.1007/s00401-021-02299-y
  • Rahman MM, Islam MR, Dhar PS. Myasthenia gravis in current status: epidemiology, types, etiology, pathophysiology, symptoms, diagnostic tests, prevention, treatment, and complications–correspondence. Int J Surg. 2023;109(2):178–180. doi: 10.1097/JS9.0000000000000164
  • Hayashi M. Childhood myasthenia gravis in Japan: pathophysiology and treatment options. Clin Exp Neuroimmunol. 2023;14(4):185–194. doi: 10.1111/cen3.12762
  • Qian K, Xu J-X, Deng Y, et al. Signaling pathways of genetic variants and miRnas in the pathogenesis of myasthenia gravis. Gland Surg. 2020;9(6):1933. doi: 10.21037/gs-20-39
  • Yan M, Fu Y, Rao H, et al. Expression and clinical significance of miR-146a and tumor necrosis factor receptor-associated factor 6 (TRAF6) in myasthenia gravis patient serum. Biomed Res Int. 2021;2021:1–6. doi: 10.1155/2021/5573469
  • Álvarez‐Velasco R, Gutiérrez‐Gutiérrez G, Trujillo JC, et al. Clinical characteristics and outcomes of thymoma‐associated myasthenia gravis. Eur J Neurol. 2021;28(6):2083–2091. doi: 10.1111/ene.14820
  • Rodolico C, Bonanno C, Toscano A, et al. MuSK-associated myasthenia gravis: clinical features and management. Front Neurol. 2020;11:660. doi: 10.3389/fneur.2020.00660
  • Muhammed L, Baheerathan A, Cao M, et al. MuSK antibody–associated myasthenia gravis with SARS-CoV-2 infection: a case report. Ann Intern Med. 2021;174(6):872–873. doi: 10.7326/L20-1298
  • Deymeer F. Myasthenia gravis: MuSK MG, late-onset MG and ocular MG. Acta Myol. 2020;39(4):345. doi: 10.36185/2532-1900-038
  • Huijbers MG, Vergoossen DL, Fillié-Grijpma YE, et al. MuSK myasthenia gravis monoclonal antibodies: Valency dictates pathogenicity. Neurol Neuroinflammation. 2019;6(3). doi: 10.1212/NXI.0000000000000547
  • Wu Y, Luo J, Garden OA. Immunoregulatory cells in myasthenia gravis. Front Neurol. 2020;11:593431. doi: 10.3389/fneur.2020.593431
  • Stathopoulos P, Kumar A, Vander HJ, et al. Mechanisms underlying B cell immune dysregulation and autoantibody production in MuSK myasthenia gravis. Ann N Y Acad Sci. 2018;1412(1):154–165. doi: 10.1111/nyas.13535
  • Yi JS, Guptill JT, Stathopoulos P, et al. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve. 2018;57(2):172–184. doi: 10.1002/mus.25973
  • Çebi M, Durmus H, Aysal F, et al. CD4+ T cells of myasthenia gravis patients are characterized by increased IL-21, IL-4, and IL-17A productions and higher presence of PD-1 and ICOS. Front Immunol. 2020;11:809. doi: 10.3389/fimmu.2020.00809
  • Guo F, Wang C, Wang S, et al. Alteration in gene expression profile of thymomas with or without myasthenia gravis linked with the nuclear factor‐kappaB/autoimmune regulator pathway to myasthenia gravis pathogenesis. Thorac Cancer. 2019;10(3):564–570. doi: 10.1111/1759-7714.12980
  • Yu S, Yan J, Fang Y, et al. Effect of thymectomy on the frequencies of peripheral regulatory B and T lymphocytes in patients with myasthenia gravis-a pilot study. Int J Neurosci. 2023;2023:1–10. doi:10.1080/00207454.2023.2254922
  • Villegas JA, Bayer AC, Ider K, et al. Il-23/Th17 cell pathway: a promising target to alleviate thymic inflammation maintenance in myasthenia gravis. J Autoimmun. 2019;98:59–73. doi: 10.1016/j.jaut.2018.11.005
  • Huang X, Zhu J, Liu T, et al. Increased expression of CD95 in CD4(+) effector memory T cells promotes Th17 response in patients with myasthenia gravis. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol. 2022;17(3–4):437–452. doi: 10.1007/s11481-021-10030-7
  • Chen P, Tang X. Gut microbiota as regulators of Th17/Treg balance in patients with myasthenia gravis. Front Immunol. 2021;12:803101. doi: 10.3389/fimmu.2021.803101
  • Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, et al. The beneficial role of autophagy in multiple sclerosis: yes or No? Autophagy. 2023;20(2):259–274. doi: 10.1080/15548627.2023.2259281
  • Tang J, Ye Z, Liu Y, et al. Autophagy-deficiency in bone marrow mononuclear cells from patients with myasthenia gravis: a possible mechanism of pathogenesis. Int J Neurosci. 2021;131(3):239–253. doi: 10.1080/00207454.2020.1738429
  • Ichimiya T, Yamakawa T, Hirano T, et al. Autophagy and Autophagy-Related Diseases: A Review. Int J Mol Sci. 2020;21(23). doi: 10.3390/ijms21238974
  • Lei Y, Klionsky DJ. The emerging roles of autophagy in human diseases. Biomedicines. 2021;9(11). doi: 10.3390/biomedicines9111651
  • Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases. EMBO J. 2021;40(19):e108863. doi: 10.15252/embj.2021108863
  • Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 2018;20(3):233–242. doi: 10.1038/s41556-018-0037-z
  • Roach PJ. AMPK -> ULK1 -> autophagy. Mol Cell Biol. 2011;31(15):3082–3084. doi: 10.1128/MCB.05565-11
  • Liu H-T, Pan S-S. Late exercise preconditioning promotes autophagy against exhaustive exercise-induced myocardial injury through the activation of the AMPK-mTOR-ULK1 pathway. Biomed Res Int. 2019;2019:5697380. doi: 10.1155/2019/5697380
  • Wang S, Wuniqiemu T, Tang W, et al. Luteolin inhibits autophagy in allergic asthma by activating PI3K/Akt/mTOR signaling and inhibiting beclin-1-PI3KC3 complex. Int Immunopharmacol. 2021;94:107460. doi: 10.1016/j.intimp.2021.107460
  • Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms. Autophagy. 2018;14(2):207–215. doi: 10.1080/15548627.2017.1378838
  • Zhang H, Zhou J, Xiao P, et al. PtdIns4P restriction by hydrolase SAC1 decides specific fusion of autophagosomes with lysosomes. Autophagy. 2021;17(8):1907–1917. doi: 10.1080/15548627.2020.1796321
  • Yang Z, Goronzy JJ, Weyand CM. Autophagy in autoimmune disease. J Mol Med (Berl). 2015;93(7):707–717. doi: 10.1007/s00109-015-1297-8
  • Yin H, Wu H, Chen Y, et al. The Therapeutic and Pathogenic Role of Autophagy in Autoimmune Diseases. Front Immunol. 2018;9:1512. doi: 10.3389/fimmu.2018.01512
  • Martinez-Pena Y, Valenzuela I, Akaaboune M. The Metabolic Stability of the Nicotinic Acetylcholine Receptor at the Neuromuscular Junction. Cells. 2021;10(2):358. doi: 10.3390/cells10020358
  • Carnio S, LoVerso F, Baraibar MA, et al. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep. 2014;8(5):1509–1521. doi: 10.1016/j.celrep.2014.07.061
  • Baraldo M, Geremia A, Pirazzini M, et al. Skeletal muscle mTORC1 regulates neuromuscular junction stability. J Cachexia Sarcopenia Muscle. 2020;11(1):208–225. doi: 10.1002/jcsm.12496
  • Ke L, Li Q, Song J, et al. The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (review). Exp Ther Med. 2021;22(1):702. doi: 10.3892/etm.2021.10134
  • Song J, Lei X, Jiao W, et al. Effect of Qiangji Jianli decoction on mitochondrial respiratory chain activity and expression of mitochondrial fusion and fission proteins in myasthenia gravis rats. Sci Rep. 2018;8(1):8623. doi: 10.1038/s41598-018-26918-z
  • Kordas G, Lagoumintzis G, Sideris S, et al. Direct proof of the in vivo pathogenic role of the AChR autoantibodies from myasthenia gravis patients. PLoS One. 2014;9(9):e108327. doi: 10.1371/journal.pone.0108327
  • Wohlgemuth SE, Calvani R, Marzetti E. The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J Mol Cell Cardiol. 2014;71:62–70. doi: 10.1016/j.yjmcc.2014.03.007
  • Wu JJ, Quijano C, Chen E, et al. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging. 2009;1(4):425–437. doi: 10.18632/aging.100038
  • Gorgey AS, Witt O, O’Brien L, et al. Mitochondrial health and muscle plasticity after spinal cord injury. Eur J Appl Physiol. 2019;119(2):315–331. doi: 10.1007/s00421-018-4039-0
  • Vercauteren K, Gleyzer N, Scarpulla RC. PGC-1-related coactivator complexes with HCF-1 and NRF-2beta in mediating NRF-2(GABP)-dependent respiratory gene expression. J Biol Chem. 2008;283(18):12102–12111. doi: 10.1074/jbc.M710150200
  • Taherzadeh-Fard E, Saft C, Akkad DA, et al. PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol Neurodegener. 2011;6(1):32. doi: 10.1186/1750-1326-6-32
  • Chauhan M, Punga T, Punga AR. Muscle-specific regulation of the mTOR signaling pathway in MuSK antibody seropositive (MuSK+) experimental autoimmune myasthenia gravis (EAMG). Neurosci Res. 2013;77(1–2):102–109. doi: 10.1016/j.neures.2013.07.008
  • Liu Y, Chen S, Wang Y, et al. Dexamethasone improves thymoma-associated myasthenia gravis via the AKT-mTOR pathway. Naunyn Schmiedebergs Arch Pharmacol. 2023;397(2):817–828. doi: 10.1007/s00210-023-02641-z
  • Troncoso R, Paredes F, Parra V, et al. Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle. 2014;13(14):2281–2295. doi: 10.4161/cc.29272
  • Zhang J, Jin H, Xu Y, et al. Rapamycin modulate Treg/Th17 balance via regulating metabolic pathways: a study in mice. Transplant Proc. 2019;51(6):2136–2140. doi: 10.1016/j.transproceed.2019.04.067
  • Jing F, Yang F, Cui F, et al. Rapamycin alleviates inflammation and muscle weakness, while altering the Treg/Th17 balance in a rat model of myasthenia gravis. Biosci Rep. 2017;37(4). doi: 10.1042/BSR20170767
  • Al-Bari MAA, Xu P. Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann N Y Acad Sci. 2020;1467(1):3–20. doi: 10.1111/nyas.14305
  • Bronietzki AW, Schuster M, Schmitz I. Autophagy in T-cell development, activation and differentiation. Immunol Cell Biol. 2015;93(1):25–34. doi: 10.1038/icb.2014.81
  • Guptill JT, Soni M, Meriggioli MN. Current treatment, emerging translational therapies, and new therapeutic targets for autoimmune myasthenia gravis. Neurother J Am Soc Exp Neurother. 2016;13(1):118–131. doi: 10.1007/s13311-015-0398-y
  • Pacholczyk R, Ignatowicz H, Kraj P, et al. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity. 2006;25(2):249–259. doi: 10.1016/j.immuni.2006.05.016
  • Zhang Y, Wang H, Chi L, et al. The role of FoxP3+CD4+CD25hi Tregs in the pathogenesis of myasthenia gravis. Immunol Lett. 2009;122(1):52–57. doi: 10.1016/j.imlet.2008.11.015
  • Alahgholi-Hajibehzad M, Kasapoglu P, Jafari R, et al. The role of T regulatory cells in immunopathogenesis of myasthenia gravis: implications for therapeutics. Expert Rev Clin Immunol. 2015;11(7):859–870. doi: 10.1586/1744666X.2015.1047345
  • Wang N, Yuan J, Karim MR, et al. Effects of mitophagy on regulatory T cell function in patients with myasthenia gravis. Front Neurol. 2020;11:238. doi: 10.3389/fneur.2020.00238
  • Aricha R, Reuveni D, Fuchs S, et al. Suppression of experimental autoimmune myasthenia gravis by autologous T regulatory cells. J Autoimmun. 2016;67:57–64. doi: 10.1016/j.jaut.2015.09.005
  • Rowin J, Thiruppathi M, Arhebamen E, et al. Granulocyte macrophage colony-stimulating factor treatment of a patient in myasthenic crisis: effects on regulatory T cells. Muscle Nerve. 2012;46(3):449–453. doi: 10.1002/mus.23488
  • Sandoval H, Kodali S, Wang J. Regulation of B cell fate, survival, and function by mitochondria and autophagy. Mitochondrion. 2018;41:58–65. doi: 10.1016/j.mito.2017.11.005
  • Martinez-Martin N, Maldonado P, Gasparrini F, et al. A switch from canonical to noncanonical autophagy shapes B cell responses. Science. 2017;355(6325):641–647. doi: 10.1126/science.aal3908
  • Pengo N, Scolari M, Oliva L, et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol. 2013;14(3):298–305. doi: 10.1038/ni.2524
  • Conway KL, Kuballa P, Khor B, et al. ATG5 regulates plasma cell differentiation. Autophagy. 2013;9(4):528–537. doi: 10.4161/auto.23484
  • Arnold J, Murera D, Arbogast F, et al. Autophagy is dispensable for B-cell development but essential for humoral autoimmune responses. Cell Death Differ. 2016;23(5):853–864. doi: 10.1038/cdd.2015.149
  • Aichinger M, Wu C, Nedjic J, et al. Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J Exp Med. 2013;210(2):287–300. doi: 10.1084/jem.20122149
  • Nedjic J, Aichinger M, Emmerich J, et al. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature. 2008;455(7211):396–400. doi: 10.1038/nature07208
  • Postoak JL, Song W, Yang G, et al. Thymic epithelial cells require lipid kinase Vps34 for CD4 but not CD8 T cell selection. J Exp Med. 2022;219(10):e20212554. doi: 10.1084/jem.20212554
  • Rodrigues PM, Sousa LG, Perrod C, et al. LAMP2 regulates autophagy in the thymic epithelium and thymic stroma-dependent CD4 T cell development. Autophagy. 2023;19(2):426–439. doi: 10.1080/15548627.2022.2074105
  • Gómez-Oca R, Cowling BS, Laporte J. Common pathogenic mechanisms in centronuclear and myotubular myopathies and latest treatment advances. Int J Mol Sci. 2021;22(21):11377. doi: 10.3390/ijms222111377
  • Schuster C, Gerold KD, Schober K, et al. The autoimmunity-associated gene CLEC16A modulates thymic epithelial cell autophagy and alters T cell selection. Immunity. 2015;42(5):942–952. doi: 10.1016/j.immuni.2015.04.011
  • Wang N, Shen N, Vyse TJ, et al. Selective IgA deficiency in autoimmune diseases. Mol Med. 2011;17(11–12):1383–1396. doi: 10.2119/molmed.2011.00195
  • Wei J, Long L, Yang K, et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol. 2016;17(3):277–285. doi: 10.1038/ni.3365
  • Kabat AM, Harrison OJ, Riffelmacher T, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. Elife. 2016;5:e12444. doi: 10.7554/eLife.12444
  • Mocholi E, Dowling SD, Botbol Y, et al. Autophagy is a tolerance-avoidance mechanism that modulates TCR-mediated signaling and cell metabolism to prevent induction of T cell anergy. Cell Rep. 2018;24(5):1136–1150. doi: 10.1016/j.celrep.2018.06.065
  • Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, et al. Metformin and growth differentiation factor 15 (GDF15) in type 2 diabetes mellitus: a hidden treasure. J Diabetes. 2022;14(12):806–814. doi: 10.1111/1753-0407.13334
  • Al-Kuraishy HM, Al-Gareeb AI, Waheed HJ, et al. Differential effect of metformin and/or glyburide on apelin serum levels in patients with type 2 diabetes mellitus: concepts and clinical practice. J Adv Pharm Technol Res. 2018;9(3):80–86. doi: 10.4103/japtr.JAPTR_273_18
  • Al-Kuraishy H, Hamada M, Al-Samerraie A. Effects of metformin on omentin levels in a newly diagnosed type II diabetes mellitus: randomized, placebo controlled study. Mustansiriya Med J. 2016;Vol(1):49–55. doi: 10.4103/2070-1128.248840
  • Al-Kuraishy HM, Al-Gareeb AI, Saad HM, et al. Long-term use of metformin and Alzheimer’s disease: beneficial or detrimental effects. Inflammopharmacology. 2023;31(3):1107–1115. doi: 10.1007/s10787-023-01163-7
  • Alnaaim SA, Al-Kuraishy HM, Al-Gareeb AI, et al. New insights on the potential anti-epileptic effect of metformin: mechanistic pathway. J Cell Mol Med. 2023;27(24):3953–3965. doi: 10.1111/jcmm.17965
  • Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, et al. Metformin role in Parkinson’s disease: a double-sword effect. Mol Cell Biochem 2023. doi: 10.1007/s11010-023-04771-7
  • Ali N, Alhamdan N, Al-Kuraishy H, et al. Irisin/PGC-1α/FNDC5 pathway in Parkinson’s disease: truth under the throes. Naunyn Schmiedebergs Arch Pharmacol. 2023;1–11. doi: 10.1007/s00210-023-02726-9
  • Lu G, Wu Z, Shang J, et al. The effects of metformin on autophagy. Biomed Pharmacother. 2021;137:111286. doi: 10.1016/j.biopha.2021.111286
  • Bharath LP, Agrawal M, McCambridge G, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 2020;32(1):44–55.e6. doi: 10.1016/j.cmet.2020.04.015
  • Cui Y, Chang L, Wang C, et al. Metformin attenuates autoimmune disease of the neuromotor system in animal models of myasthenia gravis. Int Immunopharmacol. 2019;75:105822. doi: 10.1016/j.intimp.2019.105822
  • Hao Y, Zhao W, Chang L, et al. Metformin inhibits the pathogenic functions of AChR-specific B and Th17 cells by targeting miR-146a. Immunol Lett. 2022;250:29–40. doi: 10.1016/j.imlet.2022.09.002
  • Ren H, Shao Y, Wu C, et al. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol. 2020;500:110628. doi: 10.1016/j.mce.2019.110628
  • Jiao W, Hu F, Li J, et al. Qiangji Jianli Decoction promotes mitochondrial biogenesis in skeletal muscle of myasthenia gravis rats via AMPK/PGC-1α signaling pathway. Biomed Pharmacother. 2020;129:110482. doi: 10.1016/j.biopha.2020.110482
  • Li Q, Jia S, Xu L, et al. Metformin-induced autophagy and irisin improves INS-1 cell function and survival in high-glucose environment via AMPK/SIRT1/PGC-1α signal pathway. Food Sci Nutr. 2019;7(5):1695–1703. doi: 10.1002/fsn3.1006
  • Ge J, Huang Y, Zhang Y, et al. Metformin inhibits propofol-induced apoptosis of mouse hippocampal neurons HT-22 through downregulating cav-1. Drug Des Devel Ther 2020;14:1561–1569. 10.2147/DDDT.S229520.
  • Damri O, Shemesh N, Agam G. Is there justification to treat neurodegenerative disorders by repurposing drugs? The case of Alzheimer’s disease, lithium, and autophagy. Int J Mol Sci. 2020;22(1). doi: 10.3390/ijms22010189
  • Taskaeva IS, Bgatova NP, Solovieva AO. Autophagy in hepatocellular carcinoma-29 after single or combined administration of lithium carbonate and rapamycin. Cell Tissue Biol. 2019;13(5):353–359. doi: 10.1134/S1990519X19050079
  • Alevizos B, Gatzonis S, Anagnostara C. Myasthenia gravis disclosed by lithium carbonate. J Neuropsychiatry Clin Neurosci. 2006;18(3):427–429. doi: 10.1176/jnp.2006.18.3.427
  • Afonso TM, Ferreira F, Cativo C, et al. Psychopharmacology in myasthenia gravis patients: a case study. Eur Psychiatry. 2023;66(Suppl 1):S274.
  • Sheikh S, Alvi U, Soliven B, et al. Drugs that induce or cause deterioration of myasthenia gravis: an update. J Clin Med. 2021;10(7). doi: 10.3390/jcm10071537
  • Al-Kuraishy H. Erectile dysfunction and statins: the assorted view of preponderance. Asian Pac J Reprod. 2020;9(2):55–63. doi: 10.4103/2305-0500.281074
  • Al-Kuraishy HM, Al-Gareeb AI, Saad HM, et al. The potential therapeutic effect of statins in multiple sclerosis: beneficial or detrimental effects. Inflammopharmacology. 2023;31(4):1671–1682. doi: 10.1007/s10787-023-01240-x
  • Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, et al. Pros and cons for statins use and risk of Parkinson’s disease: an updated perspective. Pharmacol Res Perspect. 2023;11(2):e01063. doi: 10.1002/prp2.1063
  • Alsubaie N, Al-Kuraishy HM, Al-Gareeb AI, et al. Statins use in alzheimer disease: bane or boon from frantic search and narrative review. Brain Sci. 2022;12(10):1290. doi: 10.3390/brainsci12101290
  • Liu L, Dai W-Z, Zhu X-C, et al. A review of autophagy mechanism of statins in the potential therapy of Alzheimer’s disease. J Integr Neurosci. 2022;21(2):46. doi: 10.31083/j.jin2102046
  • Gale J, Danesh-Meyer HV. Statins can induce myasthenia gravis. J Clin Neurosci Off J Neurosurg Soc Australas. 2014;21(2):195–197. doi: 10.1016/j.jocn.2013.11.009
  • Oh SJ, Dhall R, Young A, et al. Statins may aggravate myasthenia gravis. Muscle Nerve. 2008;38(3):1101–1107. doi: 10.1002/mus.21074
  • Gras‐Champel V, Batteux B, Masmoudi K, et al. Statin-induced myasthenia: a disproportionality analysis of the WHO’s VigiBase pharmacovigilance database. Muscle And Nerve. 2019;382–386. doi: 10.1002/mus.26637 60 4
  • Zhang P, Liu R-T, Du T, et al. Exosomes derived from statin-modified bone marrow dendritic cells increase thymus-derived natural regulatory T cells in experimental autoimmune myasthenia gravis. J Neuroinflammation. 2019;16(1):202. doi: 10.1186/s12974-019-1587-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.