401
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Bacterial ubiquitin ligases hijack the host deubiquitinase OTUB1 to inhibit MTORC1 signaling and promote autophagy

, , , , , , & ORCID Icon show all
Received 05 Sep 2023, Accepted 05 May 2024, Published online: 31 May 2024

References

  • Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67(1):425–479. doi: 10.1146/annurev.biochem.67.1.425
  • Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70(1):503–533. doi: 10.1146/annurev.biochem.70.1.503
  • Morreale FE, Walden H. Types of ubiquitin ligases. Cell. 2016;165(1):248–248 e1. doi: 10.1016/j.cell.2016.03.003
  • Mevissen TET, Komander D. Mechanisms of deubiquitinase specificity and Regulation. Annu Rev Biochem. 2017;86(1):159–192. doi: 10.1146/annurev-biochem-061516-044916
  • Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol. 2016;18(6):579–586. doi: 10.1038/ncb3358
  • Mukherjee R, Dikic I. Regulation of Host-Pathogen interactions via the Ubiquitin System. Annu Rev Microbiol. 2022;76(1):211–233. doi: 10.1146/annurev-micro-041020-025803
  • Ullrich S, Nitsche C. SARS-CoV-2 papain-like protease: structure, function and inhibition. Chembiochem. 2022;23(19):e202200327. doi: 10.1002/cbic.202200327
  • Hansen JM, de Jong MF, Wu Q, et al. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell. 2021;184(12):3178–3191 e18. doi: 10.1016/j.cell.2021.04.036
  • Li P, Jiang W, Yu Q, et al. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature. 2017;551(7680):378–383. doi: 10.1038/nature24467
  • Fraser DW, Tsai TR, Orenstein W, et al. Legionnaires’ disease: description of an epidemic of pneumonia. N Engl J Med. 1977;297(22):1189–1197. doi: 10.1056/NEJM197712012972201
  • Qiu J, Luo ZQ. Legionella and Coxiella effectors: strength in diversity and activity. Nat Rev Microbiol. 2017;15(10):591–605. doi: 10.1038/nrmicro.2017.67
  • Tomaskovic I, Gonzalez A, Dikic I. Ubiquitin and Legionella: from bench to bedside. Semin Cell Dev Biol. 2022;132:230–241. doi: 10.1016/j.semcdb.2022.02.008
  • Hsu F, Luo X, Qiu J, et al. The legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc Natl Acad Sci U S A. 2014;111(29):10538–10543. doi: 10.1073/pnas.1402605111
  • Qiu J, Sheedlo MJ, Yu K, et al. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature. 2016;533(7601):120–124. doi: 10.1038/nature17657
  • Bhogaraju S, Kalayil S, Liu Y, et al. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell. 2016;167(6):1636–1649 e13. doi: 10.1016/j.cell.2016.11.019
  • Kotewicz KM, Ramabhadran V, Sjoblom N, et al. A single legionella effector catalyzes a multistep ubiquitination pathway to rearrange tubular endoplasmic reticulum for replication. Cell Host Microbe. 2017;21(2):169–181. doi: 10.1016/j.chom.2016.12.007
  • Gan N, Zhen X, Liu Y, et al. Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature. 2019;572(7769):387–391. doi: 10.1038/s41586-019-1439-1
  • Song L, Xie Y, Li C, et al. The legionella effector SdjA is a bifunctional enzyme that distinctly regulates phosphoribosyl ubiquitination. MBio. 2021;12(5):e0231621. doi: 10.1128/mBio.02316-21
  • Bhogaraju S, Bonn F, Mukherjee R, et al. Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. Nature. 2019;572(7769):382–386. doi: 10.1038/s41586-019-1440-8
  • Black MH, Osinski A, Gradowski M, et al. Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases. Science. 2019;364(6442):787–792. doi: 10.1126/science.aaw7446
  • Sulpizio A, Minelli ME, Wan M, et al. Protein polyglutamylation catalyzed by the bacterial calmodulin-dependent pseudokinase SidJ. Elife. 2019;8:e51162. doi: 10.7554/eLife.51162
  • Wan M, Sulpizio AG, Akturk A, et al. Deubiquitination of phosphoribosyl-ubiquitin conjugates by phosphodiesterase-domain-containing legionella effectors. Proc Natl Acad Sci U S A. 2019;116(47):23518–23526. doi: 10.1073/pnas.1916287116
  • Shin D, Mukherjee R, Liu Y, et al. Regulation of phosphoribosyl-linked serine ubiquitination by Deubiquitinases DupA and DupB. Mol Cell. 2020;77(1):164–179 e6. doi: 10.1016/j.molcel.2019.10.019
  • Mevissen TE, Hospenthal MK, Geurink PP, et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell. 2013;154(1):169–184. doi: 10.1016/j.cell.2013.05.046
  • Goncharov T, Niessen K, de Almagro MC, et al. OTUB1 modulates c-IAP1 stability to regulate signalling pathways. Embo J. 2013;32(8):1103–1114. doi: 10.1038/emboj.2013.62
  • Zhao L, Wang X, Yu Y, et al. OTUB1 protein suppresses mTOR complex 1 (mTORC1) activity by deubiquitinating the mTORC1 inhibitor DEPTOR. J Biol Chem. 2018;293(13):4883–4892. doi: 10.1074/jbc.M117.809533
  • Herhaus L, Al-Salihi M, Macartney T, et al. OTUB1 enhances TGFβ signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Nat Commun. 2013;4(1):2519. doi: 10.1038/ncomms3519
  • Wu M, Sun L, Song T. OTUB1-mediated inhibition of ubiquitination: a growing list of effectors, multiplex mechanisms, and versatile functions. Front Mol Biosci. 2023;10:1261273. doi: 10.3389/fmolb.2023.1261273
  • Nakada S, Tai I, Panier S, et al. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature. 2010;466(7309):941–946. doi: 10.1038/nature09297
  • Kumari R, Kumar R, Dey AK, et al. S-Nitrosylation of OTUB1 alters its stability and Ubc13 binding. ACS Chem Neurosci. 2022;13(10):1517–1525. doi: 10.1021/acschemneuro.1c00855
  • Scholz CC, Rodriguez J, Pickel C, et al. FIH regulates cellular metabolism through hydroxylation of the Deubiquitinase OTUB1. PLOS Biol. 2016;14(1):e1002347. doi: 10.1371/journal.pbio.1002347
  • Herhaus L, Perez-Oliva AB, Cozza G, et al. Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization. Sci Signal. 2015;8(372):ra35. doi: 10.1126/scisignal.aaa0441
  • Ragaz C, Pietsch H, Urwyler S, et al. The legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol. 2008;10(12):2416–2433. doi: 10.1111/j.1462-5822.2008.01219.x
  • Horenkamp FA, Mukherjee S, Alix E, et al. Legionella pneumophila subversion of host vesicular transport by SidC effector proteins. Traffic. 2014;15(5):488–499. doi: 10.1111/tra.12158
  • Jeng EE, Bhadkamkar V, Ibe NU, et al. Systematic identification of Host cell regulators of legionella pneumophila pathogenesis using a genome-wide CRISPR screen. Cell Host Microbe. 2019;26(4):551–563 e6. doi: 10.1016/j.chom.2019.08.017
  • Lin YH, Lucas M, Evans TR, et al. RavN is a member of a previously unrecognized group of legionella pneumophila E3 ubiquitin ligases. PLOS Pathog. 2018;14(2):e1006897. doi: 10.1371/journal.ppat.1006897
  • Li S, Zheng H, Mao AP, et al. Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. J Biol Chem. 2010;285(7):4291–4297. doi: 10.1074/jbc.M109.074971
  • Ivanov SS, Roy CR. Pathogen signatures activate a ubiquitination pathway that modulates the function of the metabolic checkpoint kinase mTOR. Nat Immunol. 2013;14(12):1219–1228. doi: 10.1038/ni.2740
  • De Leon JA, Qiu J, Nicolai CJ, et al. Positive and Negative Regulation of the Master Metabolic Regulator mTORC1 by two families of legionella pneumophila effectors. Cell Rep. 2017;21(8):2031–2038. doi: 10.1016/j.celrep.2017.10.088
  • Feng YY, Chen Y, Wu XY, et al. Interplay of energy metabolism and autophagy. Autophagy. 2024;20(1):4–14. doi: 10.1080/15548627.2023.2247300
  • Choy A, Dancourt J, Mugo B, et al. The legionella effector RavZ inhibits Host autophagy through irreversible Atg8 deconjugation. Science. 2012;338(6110):1072–1076. doi: 10.1126/science.1227026
  • Liu S, Luo J, Zhen X, et al. Interplay between bacterial deubiquitinase and ubiquitin E3 ligase regulates ubiquitin dynamics on legionella phagosomes. Elife. 2020;9:e58114. doi: 10.7554/eLife.58114
  • Bialas J, Boehm AN, Catone N, et al. The ubiquitin-like modifier FAT10 stimulates the activity of deubiquitylating enzyme OTUB1. J Biol Chem. 2019;294(12):4315–4330. doi: 10.1074/jbc.RA118.005406
  • Jahan AS, Biquand E, Munoz-Moreno R, et al. OTUB1 is a Key Regulator of RIG-I-Dependent Immune Signaling and is targeted for proteasomal degradation by influenza a NS1. Cell Rep. 2020;30(5):1570–1584 e6. doi: 10.1016/j.celrep.2020.01.015
  • Juris SJ, Shah K, Shokat K, et al. Identification of otubain 1 as a novel substrate for the yersinia protein kinase using chemical genetics and mass spectrometry. FEBS Lett. 2006;580(1):179–183. doi: 10.1016/j.febslet.2005.11.071
  • Price CT, Al-Quadan T, Santic M, et al. Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science. 2011;334(6062):1553–1557. doi: 10.1126/science.1212868
  • Belyi Y, Levanova N, Schroeder GN. Glycosylating effectors of legionella pneumophila: finding the sweet spots for Host cell subversion. Biomolecules. 2022;12(2):255. doi: 10.3390/biom12020255
  • Fontana MF, Banga S, Barry KC, et al. Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent legionella pneumophila. PLOS Pathog. 2011;7(2):e1001289. doi: 10.1371/journal.ppat.1001289
  • Shen X, Banga S, Liu Y, et al. Targeting eEF1A by a legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell Microbiol. 2009;11(6):911–926. doi: 10.1111/j.1462-5822.2009.01301.x
  • Barry KC, Fontana MF, Portman JL, et al. IL-1alpha signaling initiates the inflammatory response to virulent legionella pneumophila in vivo. J Immunol. 2013;190(12):6329–6339. doi: 10.4049/jimmunol.1300100
  • Moss SM, Taylor IR, Ruggero D, et al. A legionella pneumophila kinase phosphorylates the Hsp70 chaperone family to inhibit eukaryotic protein synthesis. Cell Host Microbe. 2019;25(3):454–462 e6. doi: 10.1016/j.chom.2019.01.006
  • Beck WHJ, Kim D, Das J, et al. Glucosylation by the legionella effector SetA promotes the nuclear localization of the transcription factor TFEB. iScience. 2020;23(7):101300. doi: 10.1016/j.isci.2020.101300
  • Conover GM, Derre I, Vogel JP, et al. The legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol Microbiol. 2003;48(2):305–321. doi: 10.1046/j.1365-2958.2003.03400.x
  • Berger KH, Isberg RR. Two distinct defects in intracellular growth complemented by a single genetic locus in legionella pneumophila. Mol Microbiol. 1993;7(1):7–19. doi: 10.1111/j.1365-2958.1993.tb01092.x
  • Sheedlo MJ, Qiu J, Tan Y, et al. Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc Natl Acad Sci U S A. 2015;112(49):15090–15095. doi: 10.1073/pnas.1514568112
  • Li G, Liu H, Luo ZQ, et al. Modulation of phagosome phosphoinositide dynamics by a legionella phosphoinositide 3-kinase. EMBO Rep. 2021;22(3):e51163. doi: 10.15252/embr.202051163

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.