483
Views
0
CrossRef citations to date
0
Altmetric
Research paper

The different roles of V-ATPase a subunits in phagocytosis/endocytosis and autophagy

, , , , , , , , & show all
Received 05 Sep 2023, Accepted 07 Jun 2024, Published online: 25 Jun 2024

References

  • Cockram TOJ, Dundee JM, Popescu AS, et al. The phagocytic code regulating phagocytosis of mammalian cells. Front Immunol. 2021;12:629979. doi: 10.3389/fimmu.2021.629979
  • Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nat Rev Neurosci. 2014;15(4):209–216. doi: 10.1038/nrn3710
  • Dixon CL, Mekhail K, Fairn GD. Examining the underappreciated role of s-acylated proteins as critical regulators of phagocytosis and phagosome maturation in macrophages. Front Immunol. 2021;12:659533. doi: 10.3389/fimmu.2021.659533
  • Langemeyer L, Frohlich F, Ungermann C. Rab GTPase Function in Endosome and lysosome biogenesis. Trends Cell Biol. 2018;28(11):957–970. doi: 10.1016/j.tcb.2018.06.007
  • Christoforidis S, Hm M, Burgoyne RD, et al. The Rab5 effector EEA1 is a core component of endosome docking. Nature. 1999;397(6720):621–625. doi: 10.1038/17618
  • Balderhaar HJ, Ungermann C. CORVET and HOPS tethering complexes – coordinators of endosome and lysosome fusion. J Cell Sci. 2013;126(6):1307–1316. doi: 10.1242/jcs.107805
  • Hohlweg W, Wagner GE, Hofbauer HF, et al. A cation–π interaction in a transmembrane helix of vacuolar ATPase retains the proton-transporting arginine in a hydrophobic environment. J Biol Chem. 2018;293(49):18977–18988. doi: 10.1074/jbc.RA118.005276
  • Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 2007;8(11):917–929. doi: 10.1038/nrm2272
  • Cotter K, Stransky L, McGuire C, et al. Recent insights into the structure, regulation, and function of the V-ATPases. Trends Biochem Sci. 2015;40(10):611–622. doi: 10.1016/j.tibs.2015.08.005
  • Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol. 2012;74(1):69–86. doi: 10.1146/annurev-physiol-012110-142317
  • Capecci J, Forgac M. The function of vacuolar ATPase (V-ATPase) a subunit isoforms in invasiveness of MCF10a and MCF10CA1a human breast cancer cells. J Biol Chem. 2013;288(45):32731–32741. doi: 10.1074/jbc.M113.503771
  • Zhang W, Wang D, Volk E, et al. V-ATPase V0 sector subunit a1 in neurons is a target of calmodulin. J Biol Chem. 2008;283(1):294–300. doi: 10.1074/jbc.M708058200
  • Lee JH, McBrayer MK, Wolfe DM, et al. Presenilin 1 maintains lysosomal Ca(2+) Homeostasis via TRPML1 by regulating vatpase-mediated lysosome acidification. Cell Rep. 2015;12(9):1430–1444. doi: 10.1016/j.celrep.2015.07.050
  • Rosnoblet C, Peanne R, Legrand D, et al. Glycosylation disorders of membrane trafficking. Glycoconj J. 2013;30(1):23–31. doi: 10.1007/s10719-012-9389-y
  • Udono M, Fujii K, Harada G, et al. Impaired ATP6V0A2 expression contributes to golgi dispersion and glycosylation changes in senescent cells. Sci Rep. 2015;5(1):17342. doi: 10.1038/srep17342
  • Matsumoto N, Sekiya M, Sun-Wada GH, et al. The lysosomal V-ATPase a3 subunit is involved in localization of Mon1-Ccz1, the GEF for Rab7, to secretory lysosomes in osteoclasts. Sci Rep. 2022;12(1):8455. doi: 10.1038/s41598-022-12397-w
  • Lorente-Canovas B, Ingham N, Norgett EE, et al. Mice deficient in H±ATPase a4 subunit have severe hearing impairment associated with enlarged endolymphatic compartments within the inner ear. Dis Model Mech. 2013;6:434–442. doi: 10.1242/dmm.010645
  • Marshansky V, Futai M. The V-type H±ATPase in vesicular trafficking: targeting, regulation and function. Curr Opin Cell Biol. 2008;20(4):415–426. doi: 10.1016/j.ceb.2008.03.015
  • Kissing S, Hermsen C, Repnik U, et al. Vacuolar ATPase in phagosome-lysosome fusion. J Biol Chem. 2015;290(22):14166–14180. doi: 10.1074/jbc.M114.628891
  • Sun-Wada GH, Tabata H, Kawamura N, et al. Direct recruitment of H±ATPase from lysosomes for phagosomal acidification. J Cell Sci. 2009;122(14):2504–2513. doi: 10.1242/jcs.050443
  • Aoto K, Kato M, Akita T, et al. ATP6V0A1 encoding the a1-subunit of the V0 domain of vacuolar H(+)-ATPases is essential for brain development in humans and mice. Nat Commun. 2021;12(1):2107. doi: 10.1038/s41467-021-22389-5
  • Xu Y, Jin MZ, Yang ZY, et al. Microglia in neurodegenerative diseases. Neural Regen Res. 2021;16(2):270–280. doi: 10.4103/1673-5374.290881
  • Peri F, Nusslein-Volhard C. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell. 2008;133(5):916–927. doi: 10.1016/j.cell.2008.04.037
  • Bagh MB, Peng S, Chandra G, et al. Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nat Commun. 2017;8(1):14612. doi: 10.1038/ncomms14612
  • Wang K, Huang Z, Zhao L, et al. Large-scale forward genetic screening analysis of development of hematopoiesis in zebrafish. J Genet Genomics. 2012;39(9):473–480. doi: 10.1016/j.jgg.2012.07.008
  • Herbomel P, Thisse B, Thisse C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol. 2001;238(2):274–288. doi: 10.1006/dbio.2001.0393
  • Mehendale N, Mallik R, Kamat SS. Mapping sphingolipid metabolism pathways during phagosomal maturation. ACS Chem Biol. 2021;16(12):2757–2765. doi: 10.1021/acschembio.1c00393
  • Jin W, Dai Y, Li F, et al. Dysregulation of microglial function contributes to neuronal impairment in mcoln1a-deficient zebrafish. iScience. 2019;13:391–401. doi: 10.1016/j.isci.2019.02.031
  • Wu RS, Lam C II, H DD, et al. A rapid method for directed gene knockout for screening in G0 Zebrafish. Dev Cell. 2018;46(1):112–25 e4. doi: 10.1016/j.devcel.2018.06.003
  • Mauvezin C, Nagy P, Juhasz G, et al. Autophagosome–lysosome fusion is independent of V-ATPase-mediated acidification. Nat Commun. 2015;6(1):7007. doi: 10.1038/ncomms8007
  • Kawasaki-Nishi S, Nishi T, Forgac M. Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation. Proc Natl Acad Sci USA. 2001;98(22):12397–12402. doi: 10.1073/pnas.221291798
  • Indrawinata K, Argiropoulos P, Sugita S. Structural and functional understanding of disease-associated mutations in V-ATPase subunit a1 and other isoforms. Front Mol Neurosci. 2023;16:1135015. doi: 10.3389/fnmol.2023.1135015
  • Schumacher K, Krebs M. The V-ATPase: small cargo, large effects. Curr Opin Plant Biol. 2010;13(6):724–730. doi: 10.1016/j.pbi.2010.07.003
  • Zhou A, Bu Y, Takano T, et al. Conserved V-ATPase c subunit plays a role in plant growth by influencing V-ATPase-dependent endosomal trafficking. Plant Biotechnol J. 2016;14(1):271–283. doi: 10.1111/pbi.12381
  • Futai M, Sun-Wada GH, Wada Y, et al. Vacuolar-type ATPase: A proton pump to lysosomal trafficking. Proc Jpn Acad Ser B Phys Biol Sci. 2019;95(6):261–277. doi: 10.2183/pjab.95.018
  • Vasanthakumar T, Rubinstein JL. Structure and roles of V-type ATPases. Trends Biochem Sci. 2020;45(4):295–307. doi: 10.1016/j.tibs.2019.12.007
  • Yang Y, Ye W, Guo J, et al. CLCN7 and TCIRG1 mutations in a single family: Evidence for digenic inheritance of osteopetrosis. Mol Med Rep. 2019;19:595–600. doi: 10.3892/mmr.2018.9648
  • Matsumoto N, Sekiya M, Fujimoto Y, et al. Functional complementation of V-ATPase a subunit isoforms in osteoclasts. J Biochem. 2021;169(4):459–466. doi: 10.1093/jb/mvaa118
  • Williamson WR, Wang D, Haberman AS, et al. A dual function of V0-ATPase a1 provides an endolysosomal degradation mechanism in drosophila melanogaster photoreceptors. J Cell Bio. 2010;189(5):885–899. doi: 10.1083/jcb.201003062
  • Westerfield M. The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio). 3rd ed. University of Oregon Press, Eugene, OR. 1995.
  • Yu T, Guo W, Tian Y, et al. Distinct regulatory networks control the development of macrophages of different origins in zebrafish. Blood. 2017;129(4):509–519. doi: 10.1182/blood-2016-07-727651
  • Jin H, Sood R, Xu J, et al. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI. Development. 2009;136(4):647–654. doi: 10.1242/dev.029637

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.