258
Views
0
CrossRef citations to date
0
Altmetric
Research paper

TBC1D4 antagonizes RAB2A-mediated autophagic and endocytic pathways

, , , , , , , , , & show all
Received 25 Sep 2023, Accepted 10 Jun 2024, Published online: 04 Jul 2024

References

  • He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Ann Rev Genet. 2009;43(1):67–93. doi: 10.1146/annurev-genet-102808-114910
  • Ktistakis NT, Tooze SA. Digesting the expanding mechanisms of autophagy. Trends Cell Biol. 2016 Aug;26(8):624–635. doi: 10.1016/j.tcb.2016.03.006
  • Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy. 2021 Jan;17(1):1–382. doi: 10.1080/15548627.2020.1797280
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. [2008 Jan 11];132(1):27–42. doi: 10.1016/j.cell.2007.12.018
  • Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019 Jan 10;176(1–2):11–42. doi: 10.1016/j.cell.2018.09.048
  • Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion. Nature. 2008 Feb 28;451(7182):1069–1075. doi: 10.1038/nature06639
  • Bernard A, Klionsky DJ. Autophagosome formation: tracing the source. Dev Cell. [2013 Apr 29];25(2):116–117. doi: 10.1016/j.devcel.2013.04.004
  • Moreau K, Ravikumar B, Renna M, et al. Autophagosome precursor maturation requires homotypic fusion. Cell. 2011 Jul 22;146(2):303–317. doi: 10.1016/j.cell.2011.06.023
  • Ravikumar B, Moreau K, Jahreiss L, et al. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol. 2010 Aug;12(8):747–757. doi: 10.1038/ncb2078
  • Yamamoto H, Kakuta S, Watanabe TM, et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Bio. 2012 Jul 23;198(2):219–233. doi: 10.1083/jcb.201202061
  • Hayashi-Nishino M, Fujita N, Noda T, et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol. 2009 Dec;11(12):1433–1437. doi: 10.1038/ncb1991
  • Ylä-Anttila P, Vihinen H, Jokitalo E, et al. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy. 2009 Nov;5(8):1180–1185. doi: 10.4161/auto.5.8.10274
  • Geng J, Nair U, Yasumura-Yorimitsu K, et al. Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. ?Mol Biol Cell. [2010 Jul 1];21(13):2257–2269. doi: 10.1091/mbc.e09-11-0969
  • Guo Y, Chang C, Huang R, et al. AP1 is essential for generation of autophagosomes from the trans-Golgi network. J Cell Sci. [2012 Apr 1];125(Pt 7):1706–1715. doi: 10.1242/jcs.093203
  • van der Vaart A, Griffith J, Reggiori F, et al. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. ?Mol Biol Cell. [2010 Jul 1];21(13):2270–2284. doi: 10.1091/mbc.e09-04-0345
  • Yen WL, Shintani T, Nair U, et al. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Bio. [2010 Jan 11];188(1):101–114. doi: 10.1083/jcb.200904075
  • Hailey DW, Rambold AS, Satpute-Krishnan P, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. [2010 May 14];141(4):656–667. doi: 10.1016/j.cell.2010.04.009
  • Longatti A, Lamb CA, Razi M, et al. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Bio. [2012 May 28];197(5):659–675. doi: 10.1083/jcb.201111079
  • Puri C, Renna M, Bento CF, et al. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell. [2013 Sep 12];154(6):1285–1299. doi: 10.1016/j.cell.2013.08.044
  • Razi M, Chan EY, Tooze SA. Early endosomes and endosomal coatomer are required for autophagy. J Cell Bio. [2009 Apr 20];185(2):305–321. doi: 10.1083/jcb.200810098
  • Tan D, Cai Y, Wang J, et al. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. Proc Natl Acad Sci, USA. [2013 Nov 26];110(48):19432–19437. doi: 10.1073/pnas.1316356110
  • Ge L, Melville D, Zhang M, et al. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife. [2013 Aug 6];2:e00947. doi: 10.7554/eLife.00947
  • Ge L, Zhang M, Schekman R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. Elife. [2014 Nov 28];3:e04135. doi: 10.7554/eLife.04135
  • Lemus L, Ribas JL, Sikorska N, et al. An ER-Localized SNARE protein is exported in specific COPII vesicles for autophagosome biogenesis. Cell Rep. [2016 Feb 23];14(7):1710–1722. doi: 10.1016/j.celrep.2016.01.047
  • Ding X, Jiang X, Tian R, et al. RAB2 regulates the formation of autophagosome and autolysosome in mammalian cells. Autophagy. 2019 Oct;15(10):1774–1786. doi: 10.1080/15548627.2019.1596478
  • Lamb CA, Nühlen S, Judith D, et al. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic. Embo J. 2016 Feb 1;35(3):281–301. doi: 10.15252/embj.201592695
  • Hurley JH, Young LN. Mechanisms of autophagy initiation. Annu Revi Biochem. 2017 Jun 20;86(1):225–244. doi: 10.1146/annurev-biochem-061516-044820
  • Kamber RA, Shoemaker CJ, Denic V. Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase. Molecular Cell. 2015 Aug 6;59(3):372–381. doi: 10.1016/j.molcel.2015.06.009
  • Torggler R, Papinski D, Brach T, et al. Two Independent Pathways within Selective Autophagy Converge to Activate Atg1 Kinase at the Vacuole. Molecular Cell. 2016 Oct 20;64(2):221–235. doi: 10.1016/j.molcel.2016.09.008
  • Yeh YY, Shah KH, Herman PK. An Atg13 protein-mediated self-association of the Atg1 protein kinase is important for the induction of autophagy. J Biol Chem. 2011 Aug 19;286(33):28931–28939. doi: 10.1074/jbc.M111.250324
  • Feng Y, Backues SK, Baba M, et al. Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate of autophagosome formation. Autophagy. 2016;12(4):648–658. doi: 10.1080/15548627.2016.1157237
  • Papinski D, Kraft C. Atg1 kinase organizes autophagosome formation by phosphorylating Atg9. Autophagy. 2014 Jul;10(7):1338–1340. doi: 10.4161/auto.28971
  • Papinski D, Schuschnig M, Reiter W, et al. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Molecular Cell. 2014 Feb 6;53(3):471–483. doi: 10.1016/j.molcel.2013.12.011
  • Zhou C, Ma K, Gao R, et al. Regulation of mATG9 trafficking by Src- and ULK1-mediated phosphorylation in basal and starvation-induced autophagy. Cell Res. 2017 Feb 01;27(2):184–201. doi: 10.1038/cr.2016.146
  • Park JM, Jung CH, Seo M, et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy. 2016;12(3):547–564. doi: 10.1080/15548627.2016.1140293
  • Russell RC, Tian Y, Yuan H, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013 Jul;15(7):741–750. doi: 10.1038/ncb2757
  • Sun Q, Fan W, Chen K, et al. Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci, USA. [2008 Dec 9];105(49):19211–19216. doi: 10.1073/pnas.0810452105
  • Lőrincz P, Tóth S, Benkő P, et al. Rab2 promotes autophagic and endocytic lysosomal degradation. J Cell Bio. [2017 Jul 3];216(7):1937–1947. doi: 10.1083/jcb.201611027
  • Lund VK, Madsen KL, Kjaerulff O. Drosophila Rab2 controls endosome-lysosome fusion and LAMP delivery to late endosomes. Autophagy. 2018;14(9):1520–1542. doi: 10.1080/15548627.2018.1458170
  • Fujita N, Huang W, Lin TH, et al. Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy. Elife. [2017 Jan 7];6. doi: 10.7554/eLife.23367
  • Cheng X, Ma X, Ding X, et al. Pacer mediates the function of class III PI3K and HOPS complexes in autophagosome maturation by engaging Stx17. Mol Cell. [2017 Mar 16];65(6):1029–1043.e5. doi: 10.1016/j.molcel.2017.02.010
  • Cheng X, Ma X, Zhu Q, et al. Pacer is a mediator of mTORC1 and GSK3-TIP60 signaling in regulation of autophagosome maturation and lipid metabolism. Molecular Cell. [2019 Feb 21];73(4):788–802.e7. doi: 10.1016/j.molcel.2018.12.017
  • Cheng X, Sun Q. RUBCNL/Pacer and RUBCN/Rubicon in regulation of autolysosome formation and lipid metabolism. Autophagy. 2019 Jun;15(6):1120–1121. doi: 10.1080/15548627.2019.1596500
  • Lu Q, Zhang Y, Hu T, et al. Elegans Rab GTPase 2 is required for the degradation of apoptotic cells. Development. 2008 Mar;135(6):1069–1080. doi: 10.1242/dev.016063
  • Mangahas PM, Yu X, Miller KG, et al. The small GTPase Rab2 functions in the removal of apoptotic cells in caenorhabditis elegans. J Cell Bio. [2008 Jan 28];180(2):357–373. doi: 10.1083/jcb.200708130
  • Yin J, Huang Y, Guo P, et al. GOP-1 promotes apoptotic cell degradation by activating the small GTPase Rab2 in C. elegans. J Cell Bio. [2017 Jun 5];216(6):1775–1794. doi: 10.1083/jcb.201610001
  • Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci, USA. [2006 Aug 8];103(32):11821–11827. doi: 10.1073/pnas.0601617103
  • Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J. 2021 Jan;288(1):36–55. doi: 10.1111/febs.15453
  • Barr FA, Rab GEFs, GAPs. The Enigma Variations. In: Wittinghofer A, editor. Ras Superfamily Small G Proteins: Biology and Mechanisms 2: Transport. Cham: Springer International Publishing; 2014. p. 81–106. doi: 10.1007/978-3-319-07761-1_5
  • Mîinea CP, Sano H, Kane S, et al. AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J. [2005 Oct 1];391(Pt 1):87–93. doi: 10.1042/BJ20050887
  • Sano H, Kane S, Sano E, et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem. [2003 Apr 25];278(17):14599–14602. doi: 10.1074/jbc.C300063200
  • Sano H, Eguez L, Teruel MN, et al. Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab. 2007 Apr;5(4):293–303. doi: 10.1016/j.cmet.2007.03.001
  • Eguez L, Lee A, Chavez JA, et al. Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metab. 2005 Oct;2(4):263–272. doi: 10.1016/j.cmet.2005.09.005
  • Ishikura S, Bilan PJ, Klip A. Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem Biophys Res Commun. [2007 Feb 23];353(4):1074–1079. doi: 10.1016/j.bbrc.2006.12.140
  • Moltke I, Grarup N, Jørgensen ME, et al. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature. [2014 Aug 14];512(7513):190–193. doi: 10.1038/nature13425
  • Kanno E, Ishibashi K, Kobayashi H, et al. Comprehensive screening for novel rab-binding proteins by GST pull-down assay using 60 different mammalian Rabs. Traffic. 2010 Apr;11(4):491–507. doi: 10.1111/j.1600-0854.2010.01038.x
  • Morishita H, Kaizuka T, Hama Y, et al. A new probe to measure autophagic flux in vitro and in vivo. Autophagy. [2017 Apr 3];13(4):757–758. doi: 10.1080/15548627.2016.1278094
  • Yim WW, Yamamoto H, Mizushima N. A pulse-chasable reporter processing assay for mammalian autophagic flux with HaloTag. Elife. 2022 Aug 8;11. doi: 10.7554/eLife.78923
  • Rudinskiy M, Bergmann TJ, Molinari M, et al. Quantitative and time-resolved monitoring of organelle and protein delivery to the lysosome with a tandem fluorescent Halo-GFP reporter. ?Mol Biol Cell. [2022 May 15];33(6):ar57. doi: 10.1091/mbc.E21-10-0526
  • Pan X, Eathiraj S, Munson M, et al. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature. 2006 July 01;442(7100):303–306. doi: 10.1038/nature04847
  • Koumanov F, Richardson JD, Murrow BA, et al. AS160 Phosphotyrosine-binding domain constructs inhibit insulin-stimulated GLUT4 vesicle fusion with the plasma membrane. J Biol Chem. [2011 May 13];286(19):16574–16582. doi: 10.1074/jbc.M111.226092
  • Eickelschulte S, Hartwig S, Leiser B, et al. AKT/AMPK-mediated phosphorylation of TBC1D4 disrupts the interaction with insulin-regulated aminopeptidase. J Biol Chem. 2021 Jan-Jun;296:100637. doi: 10.1016/j.jbc.2021.100637
  • Rao XS, Cong XX, Gao XK, et al. AMPK-mediated phosphorylation enhances the auto-inhibition of TBC1D17 to promote Rab5-dependent glucose uptake. Cell Death Differ. 2021 Dec;28(12):3214–3234. doi: 10.1038/s41418-021-00809-9
  • Bhattacharya A, Mukherjee R, Kuncha SK, et al. A lysosome membrane regeneration pathway depends on TBC1D15 and autophagic lysosomal reformation proteins. Nat Cell Biol. 2023 May;25(5):685–698. doi: 10.1038/s41556-023-01125-9
  • Fujita N, Itoh T, Omori H, et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. ?Mol Biol Cell. 2008 May;19(5):2092–2100. doi: 10.1091/mbc.e07-12-1257
  • Schleinitz A, Pöttgen LA, Keren-Kaplan T, et al. Consecutive functions of small GTPases guide HOPS-mediated tethering of late endosomes and lysosomes. Cell Rep. [2023 Jan 31];42(1):111969. doi: 10.1016/j.celrep.2022.111969
  • Ailion M, Hannemann M, Dalton S, et al. Two Rab2 interactors regulate dense-core vesicle maturation. Neuron. [2014 Apr 2];82(1):167–180. doi: 10.1016/j.neuron.2014.02.017
  • Aizawa M, Fukuda M. Small GTPase Rab2B and Its Specific Binding Protein Golgi-associated Rab2B Interactor-like 4 (GARI-L4) Regulate Golgi Morphology. J Biol Chem. [2015 Sep 4];290(36):22250–22261. doi: 10.1074/jbc.M115.669242
  • Cheung AY, Chen CY, Glaven RH, et al. Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. Plant Cell. 2002 Apr;14(4):945–962. doi: 10.1105/tpc.000836
  • Chun DK, McEwen JM, Burbea M, et al. UNC-108/Rab2 regulates postendocytic trafficking in Caenorhabditis elegans. ?Mol Biol Cell. 2008 Jul;19(7):2682–2695. doi: 10.1091/mbc.e07-11-1120
  • Csizmadia T, Lőrincz P, Hegedűs K, et al. Molecular mechanisms of developmentally programmed crinophagy in drosophila. J Cell Bio. [2018 Jan 2];217(1):361–374. doi: 10.1083/jcb.201702145
  • Guo P, Hu T, Zhang J, et al. Sequential action of caenorhabditis elegans rab GTPases regulates phagolysosome formation during apoptotic cell degradation. Proc Natl Acad Sci, USA. [2010 Oct 19];107(42):18016–18021. doi: 10.1073/pnas.1008946107
  • Kajiho H, Kajiho Y, Frittoli E, et al. RAB2A controls MT1-MMP endocytic and E-cadherin polarized golgi trafficking to promote invasive breast cancer programs. EMBO Rep. 2016 Jul;17(7):1061–1080. doi: 10.15252/embr.201642032
  • Sugawara T, Kano F, Murata M. Rab2A is a pivotal switch protein that promotes either secretion or ER-associated degradation of (pro)insulin in insulin-secreting cells. Sci Rep. [2014 Nov 7];4(1):6952. doi: 10.1038/srep06952
  • Tisdale EJ, Balch WE. Rab2 is essential for the maturation of pre-golgi intermediates. J Biol Chem. [1996 Nov 15];271(46):29372–29379. doi: 10.1074/jbc.271.46.29372
  • Tisdale EJ, Jackson MR. Rab2 protein enhances coatomer recruitment to pre-golgi intermediates. J Biol Chem. [1998 Jul 3];273(27):17269–17277. doi: 10.1074/jbc.273.27.17269
  • Tisdale EJ. Rab2 requires PKCι/Λ to recruit β-COP for vesicle formation. Traffic. 2000 Sep;1(9):702–712. doi: 10.1034/j.1600-0854.2000.010903.x
  • Ueda N, Tomita T, Yanagisawa K, et al. Retromer and Rab2-dependent trafficking mediate PS1 degradation by proteasomes in endocytic disturbance. J Neurochem. 2016 May;137(4):647–658. doi: 10.1111/jnc.13586
  • Xie B, Chen Q, Chen L, et al. The inactivation of RabGAP function of AS160 promotes lysosomal degradation of GLUT4 and causes postprandial hyperglycemia and hyperinsulinemia. Diabetes. 2016 Nov;65(11):3327–3340. doi: 10.2337/db16-0416
  • Roy S, Leidal AM, Ye J, et al. Autophagy-dependent shuttling of TBC1D5 controls plasma membrane translocation of GLUT1 and Glucose Uptake. Molecular Cell. [2017 Jul 6];67(1):84–95.e5. doi: 10.1016/j.molcel.2017.05.020
  • Wu L, Xu D, Zhou L, et al. Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Dev Cell. [2014 Aug 25];30(4):378–393. doi: 10.1016/j.devcel.2014.07.005
  • Jewett CE, Soh AWJ, Lin CH, et al. RAB19 directs cortical remodeling and membrane growth for primary ciliogenesis. Dev Cell. [2021 Feb 8];56(3):325–340.e8. doi: 10.1016/j.devcel.2020.12.003
  • Gongpan P, Lu Y, Wang F, et al. AS160 controls eukaryotic cell cycle and proliferation by regulating the CDK inhibitor p21. Cell cycle (Georgetown, Tex). Cell Cycle. [2016 Jul 2];15(13):1733–1741. doi: 10.1080/15384101.2016.1183853

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.