0
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging roles of ATG9/ATG9A in autophagy: implications for cell and neurobiology

ORCID Icon, , ORCID Icon & ORCID Icon
Received 07 Jan 2024, Accepted 22 Jul 2024, Published online: 04 Aug 2024

References

  • Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000 Dec 1;290(5497):1717–1721. doi: 10.1126/science.290.5497.1717
  • Feng Y, He D, Yao Z, et al. The machinery of macroautophagy. Cell Res. 2014 Jan;24(1):24–41. doi: 10.1038/cr.2013.168
  • Kuma A, Mizushima N. Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin Cell Dev Biol. 2010 Sept 01;21(7):683–690. doi: 10.1016/j.semcdb.2010.03.002
  • Mortimore GE, Pösö AR. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr. 1987;7(1):539–564. doi: 10.1146/annurev.nu.07.070187.002543
  • Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol. 2004 Dec;36(12):2445–2462. doi: 10.1016/j.biocel.2004.02.002
  • Burman C, Ktistakis NT. Autophagosome formation in mammalian cells. Semin Immunopathol. 2010 Dec 01;32(4):397–413. doi: 10.1007/s00281-010-0222-z
  • Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol. 2001 Mar;2(3):211–216. doi: 10.1038/35056522
  • Uchiyama Y, Shibata M, Koike M, et al. Autophagy-physiology and pathophysiology. Histochem Cell Biol. 2008 Apr;129(4):407–420. doi: 10.1007/s00418-008-0406-y
  • Mercer TJ, Gubas A, Tooze SA. A molecular perspective of mammalian autophagosome biogenesis. J Biol Chem. 2018 Apr 13;293(15):5386–5395. doi: 10.1074/jbc.R117.810366
  • Nakatogawa H, Suzuki K, Kamada Y, et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009 Jul;10(7):458–467. doi: 10.1038/nrm2708
  • Melia TJ, Lystad AH, Simonsen A. Autophagosome biogenesis: from membrane growth to closure. J Cell Biol. 2020 Jun 1;219(6). doi: 10.1083/jcb.202002085
  • Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol. 2020 Aug 01;21(8):439–458. doi: 10.1038/s41580-020-0241-0
  • Matoba K, Noda NN. Structural catalog of core atg proteins opens new era of autophagy research. J Biochem. 2021 Jul 3;169(5):517–525. doi: 10.1093/jb/mvab017
  • Yamamoto H, Kakuta S, Watanabe TM, et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol. 2012 Jul 23;198(2):219–233. doi: 10.1083/jcb.201202061
  • Reggiori F, Shintani T, Nair U, et al. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy. 2005 Jul;1(2):101–109. doi: 10.4161/auto.1.2.1840
  • Noda T, Kim J, Huang WP, et al. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the cvt and autophagy pathways. J Cell Biol. 2000 Feb 7;148(3):465–480. doi: 10.1083/jcb.148.3.465
  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. doi: 10.1093/nar/gkh340
  • Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018 Jun 1;35(6):1547–1549. doi: 10.1093/molbev/msy096
  • Bult CJ, Sternberg PW. The alliance of genome resources: transforming comparative genomics. Mamm Genome. 2023 Dec;34(4):531–544. doi: 10.1007/s00335-023-10015-2
  • Martin FJ, Amode MR, Aneja A, et al. Ensembl 2023. Nucleic Acids Res. 2023;51(D1):D933–D941. doi: 10.1093/nar/gkac958
  • Chiduza GN, Garza-Garcia A, Almacellas E, et al. ATG9B is a tissue-specific homotrimeric lipid scramblase that can compensate for ATG9A. Autophagy. 2023 Nov;20(3):1–20. doi: 10.1080/15548627.2023.2275905
  • Robb GB, Carson AR, Tai SC, et al. Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript. J Biol Chem. 2004 Sep 3;279(36):37982–37996. doi: 10.1074/jbc.M400271200
  • Wang N, Tan HY, Li S, et al. Atg9b deficiency suppresses autophagy and potentiates endoplasmic reticulum stress-associated hepatocyte apoptosis in Hepatocarcinogenesis. Theranostics. 2017;7(8):2325–2338. doi: 10.7150/thno.18225
  • Tamura H, Shibata M, Koike M, et al. Atg9A protein, an autophagy-related membrane protein, is localized in the neurons of mouse brains. J Histochem Cytochem. 2010 May;58(5):443–453. doi: 10.1369/jhc.2010.955690
  • Yamada T, Carson AR, Caniggia I, et al. Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J Biol Chem. 2005 May 6;280(18):18283–18290. doi: 10.1074/jbc.M413957200
  • Mailler E, Guardia CM, Bai X, et al. The autophagy protein ATG9A enables lipid mobilization from lipid droplets. Nat Commun. 2021 Nov 19;12(1):6750. doi: 10.1038/s41467-021-26999-x
  • Zhang X, Li C, Wang D, et al. Aberrant methylation of ATG2B, ATG4D, ATG9A and ATG9B CpG island promoter is associated with decreased mRNA expression in sporadic breast carcinoma. Gene. 2016 Sep 30;590(2):285–292. doi: 10.1016/j.gene.2016.05.036
  • Young AR, Chan EY, Hu XW, et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci. 2006 Sep 15;119(Pt 18):3888–3900. doi: 10.1242/jcs.03172
  • Saitoh T, Fujita N, Hayashi T, et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A. [2009 Dec 8];106(49):20842–20846. doi: 10.1073/pnas.0911267106
  • Kojima T, Yamada T, Akaishi R, et al. Role of the Atg9a gene in intrauterine growth and survival of fetal mice. Reprod Biol. 2015 Sep;15(3):131–138. doi: 10.1016/j.repbio.2015.05.001
  • Mattera R, Park SY, De Pace R, et al. AP-4 mediates export of ATG9A from the trans-Golgi network to promote autophagosome formation. Proc Natl Acad Sci U S A. [2017 Dec 12];114(50):E10697–E10706. doi: 10.1073/pnas.1717327114
  • Kishi-Itakura C, Koyama-Honda I, Itakura E, et al. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J Cell Sci. [2014 Sep 15];127(Pt 18):4089–4102. doi: 10.1242/jcs.164293
  • Guardia CM, Tan XF, Lian T, et al. Structure of human ATG9A, the only transmembrane protein of the core autophagy machinery. Cell Rep. 2020 Jun 30;31(13):107837. doi: 10.1016/j.celrep.2020.107837
  • Runwal G, Stamatakou E, Siddiqi FH, et al. LC3-positive structures are prominent in autophagy-deficient cells. Sci Rep. 2019 July 12;9(1):10147. doi: 10.1038/s41598-019-46657-z
  • Olivas TJ, Wu Y, Yu S, et al. ATG9 vesicles comprise the seed membrane of mammalian autophagosomes. J Cell Biol. 2023 Jul 3;222(7). doi: 10.1083/jcb.202208088
  • Yamaguchi J, Suzuki C, Nanao T, et al. Atg9a deficiency causes axon-specific lesions including neuronal circuit dysgenesis. Autophagy. 2018;14(5):764–777. doi: 10.1080/15548627.2017.1314897
  • Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007 08;282(33):24131–24145. doi: 10.1074/jbc.M702824200
  • Son JH, Shim JH, Kim K-H, et al. Neuronal autophagy and neurodegenerative diseases. Exp Mol Med. 2012 Feb 01;44(2):89–98. doi: 10.3858/emm.2012.44.2.031
  • Stavoe AKH, Holzbaur ELF. Autophagy in neurons. Annu Rev Cell Dev Biol. 2019 Oct 6;35(1):477–500. doi: 10.1146/annurev-cellbio-100818-125242
  • Lai LTF, Yu C, Wong JSK, et al. Subnanometer resolution cryo-EM structure of Arabidopsis thaliana ATG9. Autophagy. 2020 Mar;16(3):575–583. doi: 10.1080/15548627.2019.1639300
  • Maeda S, Yamamoto H, Kinch LN, et al. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat Struct Mol Biol. 2020 Dec;27(12):1194–1201. doi: 10.1038/s41594-020-00520-2
  • Matoba K, Kotani T, Tsutsumi A, et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat Struct Mol Biol. 2020 Dec;27(12):1185–1193. doi: 10.1038/s41594-020-00518-w
  • Malhotra N, Khatri S, Kumar A, et al. AI-based AlphaFold2 significantly expands the structural space of the autophagy pathway. Autophagy. 2023 Dec;19(12):3201–3220. doi: 10.1080/15548627.2023.2238578
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–242. doi: 10.1093/nar/28.1.235
  • Sehnal D, Bittrich S, Deshpande M, et al. Mol* viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021;49(W1):W431–W437. doi: 10.1093/nar/gkab314
  • Park D, Wu Y, Wang X, et al. Synaptic vesicle proteins and ATG9A self-organize in distinct vesicle phases within synapsin condensates. Nat Commun. 2023 Jan 28;14(1):455. doi: 10.1038/s41467-023-36081-3
  • van Vliet AR, Chiduza GN, Maslen SL, et al. ATG9A and ATG2A form a heteromeric complex essential for autophagosome formation. Mol Cell. 2022 Nov 17;82(22):4324–4339 e8. doi: 10.1016/j.molcel.2022.10.017
  • Noda NN. Atg2 and Atg9: intermembrane and interleaflet lipid transporters driving autophagy. Biochim Biophys Acta Mol Cell Biol Lipids. 2021 Aug;1866(8):158956. doi: 10.1016/j.bbalip.2021.158956
  • Kakuta S, Yamaguchi J, Suzuki C, et al. Small GTPase Rab1B is associated with ATG9A vesicles and regulates autophagosome formation. Faseb J. 2017 Sep;31(9):3757–3773. doi: 10.1096/fj.201601052R
  • Orsi A, Razi M, Dooley HC, et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell. 2012 May;23(10):1860–1873. doi: 10.1091/mbc.e11-09-0746
  • Imai K, Hao F, Fujita N, et al. Atg9A trafficking through the recycling endosomes is required for autophagosome formation. J Cell Sci. 2016 Oct 15;129(20):3781–3791. doi: 10.1242/jcs.196196
  • Puri C, Renna M, Bento CF, et al. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell. 2013 Sep 12;154(6):1285–1299. doi: 10.1016/j.cell.2013.08.044
  • Claude-Taupin A, Jia J, Bhujabal Z, et al. ATG9A protects the plasma membrane from programmed and incidental permeabilization. Nat Cell Biol. 2021 Aug;23(8):846–858. doi: 10.1038/s41556-021-00706-w
  • Majumder P, Edmison D, Rodger C, et al. AP-4 regulates neuronal lysosome composition, function, and transport via regulating export of critical lysosome receptor proteins at the trans-Golgi network. Mol Biol Cell. 2022 Oct 1;33(12):ar102. doi: 10.1091/mbc.E21-09-0473
  • Davies AK, Itzhak DN, Edgar JR, et al. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat Commun. 2018 Sep 27;9(1):3958. doi: 10.1038/s41467-018-06172-7
  • De Pace R, Skirzewski M, Damme M, et al. Altered distribution of ATG9A and accumulation of axonal aggregates in neurons from a mouse model of AP-4 deficiency syndrome. PLOS Genet. 2018 Apr;14(4):e1007363. doi: 10.1371/journal.pgen.1007363
  • Ivankovic D, Drew J, Lesept F, et al. Axonal autophagosome maturation defect through failure of ATG9A sorting underpins pathology in AP-4 deficiency syndrome. Autophagy. 2020 Mar;16(3):391–407. doi: 10.1080/15548627.2019.1615302
  • Kannangara AR, Poole DM, McEwan CM, et al. BioID reveals an ATG9A interaction with ATG13-ATG101 in the degradation of p62/SQSTM1-ubiquitin clusters. EMBO Rep. 2021 Oct 5;22(10):e51136. doi: 10.15252/embr.202051136
  • Binotti B, Ninov M, Cepeda AP, et al. ATG9 resides on a unique population of small vesicles in presynaptic nerve terminals. Autophagy. 2023 Oct;20(4):1–19. doi: 10.1080/15548627.2023.2274204
  • Zhou C, Ma K, Gao R, et al. Regulation of mATG9 trafficking by src- and ULK1-mediated phosphorylation in basal and starvation-induced autophagy. Cell Res. 2017 Feb;27(2):184–201. doi: 10.1038/cr.2016.146
  • Popovic D, Dikic I. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep. 2014 Apr;15(4):392–401. doi: 10.1002/embr.201337995
  • Guo Y, Chang C, Huang R, et al. AP1 is essential for generation of autophagosomes from the trans-Golgi network. J Cell Sci. [2012 Apr 1];125(Pt 7):1706–1715. doi: 10.1242/jcs.093203
  • Yang S, Park D, Manning L, et al. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron. 2022 Mar 2;110(5):824–840 e10. doi: 10.1016/j.neuron.2021.12.031
  • Stavoe AK, Hill SE, Hall DH, et al. KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses. Dev Cell. 2016 Jul 25;38(2):171–185. doi: 10.1016/j.devcel.2016.06.012
  • Xuan Z, Yang S, Clark B, et al. The active zone protein clarinet regulates synaptic sorting of ATG-9 and presynaptic autophagy. PLOS Biol. 2023 Apr;21(4):e3002030. doi: 10.1371/journal.pbio.3002030
  • Xuan Z, Colón-Ramos DA. The active zone protein CLA-1 (clarinet) bridges two subsynaptic domains to regulate presynaptic sorting of ATG-9. Autophagy. 2023 Oct;19(10):2807–2808. doi: 10.1080/15548627.2023.2229227
  • Okerlund ND, Schneider K, Leal-Ortiz S, et al. Bassoon controls presynaptic autophagy through Atg5. Neuron. 2017 Feb 22;93(4):897–913.e7. doi: 10.1016/j.neuron.2017.01.026
  • Ke X, Bittencourt C, Van Tendeloo G. Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials. Beilstein J Nanotechnol. 2015;6:1541–1557. doi: 10.3762/bjnano.6.158
  • Coumans F, Brisson A, Buzás E, et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017 May 12;120:1632–1648. doi: 10.1161/CIRCRESAHA.117.309417
  • Noda T. Autophagy in the context of the cellular membrane-trafficking system: the enigma of Atg9 vesicles. Biochem Soc Trans. 2017 Dec 15;45(6):1323–1331. doi: 10.1042/BST20170128
  • Taoufiq Z, Ninov M, Villar-Briones A, et al. Hidden proteome of synaptic vesicles in the mammalian brain. Proc Natl Acad Sci USA. 2020 Dec 29;117(52):33586–33596. doi: 10.1073/pnas.2011870117
  • Ren X, Nguyen TN, Lam WK, et al. Structural basis for ATG9A recruitment to the ULK1 complex in mitophagy initiation. Sci Adv. [2023 Feb 15];9(7):eadg2997. doi: 10.1126/sciadv.adg2997
  • Nguyen A, Lugarini F, David C, et al. Metamorphic proteins at the basis of human autophagy initiation and lipid transfer. Mol Cell. 2023 Jun 15;83(12):2077–2090 e12. doi: 10.1016/j.molcel.2023.04.026
  • Merrill NM, Schipper JL, Karnes JB, et al. PI3K-C2α knockdown decreases autophagy and maturation of endocytic vesicles. PLOS ONE. 2017;12(9):e0184909. doi: 10.1371/journal.pone.0184909
  • Ghanbarpour A, Valverde DP, Melia TJ, et al. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proc Natl Acad Sci USA. 2021 Apr 20;118(16). doi: 10.1073/pnas.2101562118
  • Suzuki K, Ohsumi Y. Current knowledge of the pre-autophagosomal structure (PAS). FEBS Lett. 2010 Apr 02;584(7):1280–1286. doi: 10.1016/j.febslet.2010.02.001
  • Ktistakis NT, Tooze SA. Digesting the expanding mechanisms of autophagy. Trends Cell Biol. 2016 Aug 01;26(8):624–635. doi: 10.1016/j.tcb.2016.03.006
  • Goldsmith J, Ordureau A, Harper JW, et al. Brain-derived autophagosome profiling reveals the engulfment of nucleoid-enriched mitochondrial fragments by basal autophagy in neurons. Neuron. [2022 Mar 16];110(6):967–976 e8. doi: 10.1016/j.neuron.2021.12.029
  • Karanasios E, Walker SA, Okkenhaug H, et al. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat Commun. 2016 Aug 11;7(1):12420. doi: 10.1038/ncomms12420
  • Kageyama S, Omori H, Saitoh T, et al. The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol Biol Cell. 2011 Jul 1;22(13):2290–2300. doi: 10.1091/mbc.e10-11-0893
  • Holzer E, Martens S, Tulli S. The role of ATG9 vesicles in autophagosome biogenesis. J Mol Biol. 2024 Feb 10;436(15):168489. doi: 10.1016/j.jmb.2024.168489
  • Valverde DP, Yu S, Boggavarapu V, et al. ATG2 transports lipids to promote autophagosome biogenesis. J Cell Biol. [2019 Jun 3];218(6):1787–1798. doi: 10.1083/jcb.201811139
  • Gomez-Sanchez R, Rose J, Guimaraes R, et al. Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J Cell Biol. 2018 Aug 6;217(8):2743–2763. doi: 10.1083/jcb.201710116
  • Osawa T, Kotani T, Kawaoka T, et al. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat Struct Mol Biol. 2019 Apr;26(4):281–288. doi: 10.1038/s41594-019-0203-4
  • Graef M. Membrane tethering by the autophagy ATG2A-WIPI4 complex. Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):10540–10541. doi: 10.1073/pnas.1814759115
  • Zheng J-X, Li Y, Ding Y-H, et al. Architecture of the ATG2B-WDR45 complex and an aromatic Y/HF motif crucial for complex formation. Autophagy. 2017 Nov 02;13(11):1870–1883. doi: 10.1080/15548627.2017.1359381
  • Vargas Duarte P, Reggiori F. The organization and function of the phagophore-ER membrane contact sites. Contact (Thousand Oaks). Contact. 2023 Jan-Dec;6:25152564231183898. doi: 10.1177/25152564231183898
  • Moretti F, Bergman P, Dodgson S, et al. TMEM41B is a novel regulator of autophagy and lipid mobilization. EMBO Rep. 2018 Sep 01;19(9):e45889. doi: 10.15252/embr.201845889
  • Morita K, Hama Y, Izume T, et al. Genome-wide CRISPR screen identifies TMEM41B as a gene required for autophagosome formation. J Cell Biol. 2018;217(11):3817–3828. doi: 10.1083/jcb.201804132
  • Shoemaker CJ, Huang TQ, Weir NR, et al. CRISPR screening using an expanded toolkit of autophagy reporters identifies TMEM41B as a novel autophagy factor. PLOS Biol. 2019;17(4):e2007044. doi: 10.1371/journal.pbio.2007044
  • Chen A, Ding WX, Ni HM. Scramblases as regulators of autophagy and lipid homeostasis: implications for NAFLD. Autophagy Rep. 2022;1(1):143–160. doi: 10.1080/27694127.2022.2055724
  • Sawa-Makarska J, Baumann V, Coudevylle N, et al. Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation. Science. 2020 Sep 4;369(6508). doi: 10.1126/science.aaz7714
  • Broadbent DG, Barnaba C, Perez GI, et al. Quantitative analysis of autophagy reveals the role of ATG9 and ATG2 in autophagosome formation. J Cell Biol. 2023 Jul 3;222(7). doi: 10.1083/jcb.202210078
  • Pfisterer SG, Bakula D, Frickey T, et al. Lipid droplet and early autophagosomal membrane targeting of Atg2A and Atg14L in human tumor cells[S]. J Lipid Res. 2014 July 01;55(7):1267–1278. doi: 10.1194/jlr.M046359
  • Velikkakath AKG, Nishimura T, Oita E, et al. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol Biol Cell. 2012;23(5):896–909. doi: 10.1091/mbc.e11-09-0785
  • Bradberry MM, Mishra S, Zhang Z, et al. Rapid and gentle immunopurification of brain synaptic vesicles. J Neurosci. 2022 Apr 27;42(17):3512–3522. doi: 10.1523/JNEUROSCI.2521-21.2022
  • Chantranupong L, Saulnier JL, Wang W, et al. Rapid purification and metabolomic profiling of synaptic vesicles from mammalian brain. Elife. 2020 Oct 12;9:e59699. doi: 10.7554/eLife.59699
  • Hanna MG, Suen PH, Wu Y, et al. SHIP164 is a chorein motif lipid transfer protein that controls endosome–golgi membrane traffic. J Cell Biol. 2022;221(6):e202111018. doi: 10.1083/jcb.202111018
  • van Vliet AR, Jefferies HBJ, Faull PA, et al. Exploring the ATG9A interactome uncovers interaction with VPS13A. J Cell Sci. 2024;137(4):jcs261081. doi: 10.1242/jcs.261081
  • Nishida Y, Nakamura M, Urata Y, et al. Novel pathogenic VPS13A gene mutations in Japanese patients with chorea-acanthocytosis. Neurol Genet. 2019 Jun;5(3):e332. doi: 10.1212/NXG.0000000000000332
  • García-García E, Chaparro-Cabanillas N, Coll-Manzano A, et al. Unraveling the spatiotemporal distribution of VPS13A in the mouse brain. Int J Mol Sci. 2021 Dec 1;22(23):13018. doi: 10.3390/ijms222313018
  • Hayashi-Nishino M, Fujita N, Noda T, et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol. 2009 Dec;11(12):1433–1437. doi: 10.1038/ncb1991
  • Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008 Aug 25;182(4):685–701. doi: 10.1083/jcb.200803137
  • Walker SA, Ktistakis NT. Autophagosome biogenesis machinery. J Mol Biol. 2020 Apr 03;432(8):2449–2461. doi: 10.1016/j.jmb.2019.10.027
  • Hailey DW, Rambold AS, Satpute-Krishnan P, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 2010 May 14;141(4):656–667. doi: 10.1016/j.cell.2010.04.009
  • Hamasaki M, Furuta N, Matsuda A, et al. Autophagosomes form at ER–mitochondria contact sites. Nature. 2013 Mar 01;495(7441):389–393. doi: 10.1038/nature11910
  • Wen JK, Wang YT, Chan CC, et al. Atg9 antagonizes TOR signaling to regulate intestinal cell growth and epithelial homeostasis in Drosophila. Elife. 2017 Nov 16;6. doi: 10.7554/eLife.29338
  • Hanaoka H, Noda T, Shirano Y, et al. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 2002 Jul;129(3):1181–1193. doi: 10.1104/pp.011024
  • Tóth ML, Sigmond T, Borsos E, et al. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy. 2008 Apr;4(3):330–338. doi: 10.4161/auto.5618
  • Hashimoto Y, Ookuma S, Nishida E. Lifespan extension by suppression of autophagy genes in caenorhabditis elegans. Genes Cells. 2009 Jun;14(6):717–726. doi: 10.1111/j.1365-2443.2009.01306.x
  • Hensel LL, Grbić V, Baumgarten DA, et al. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in arabidopsis. Plant Cell. 1993;5(5):553–564. doi: 10.1105/tpc.5.5.553
  • Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008 Nov 13;456(7219):264–268. doi: 10.1038/nature07383
  • Kuma A, Komatsu M, Mizushima N. Autophagy-monitoring and autophagy-deficient mice. Autophagy. [2017 Oct 3];13(10):1619–1628. doi: 10.1080/15548627.2017.1343770
  • Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004 Dec 23;432(7020):1032–1036. doi: 10.1038/nature03029
  • Kiss V, Jipa A, Varga K, et al. Drosophila Atg9 regulates the actin cytoskeleton via interactions with profilin and ena. Cell Death Differ. 2020 May;27(5):1677–1692. doi: 10.1038/s41418-019-0452-0
  • Campisi D, Desrues L, Dembélé KP, et al. The core autophagy protein ATG9A controls dynamics of cell protrusions and directed migration. J Cell Biol. 2022 Mar 7;221(3). doi: 10.1083/jcb.202106014
  • Nishiyama J, Miura E, Mizushima N, et al. Aberrant membranes and double-membrane structures accumulate in the axons of Atg5-null purkinje cells before neuronal death. Autophagy. 2007 Nov-Dec;3(6):591–596. doi: 10.4161/auto.4964
  • Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006 Jun 15;441(7095):885–889. doi: 10.1038/nature04724
  • Trentesaux C, Fraudeau M, Pitasi CL, et al. Essential role for autophagy protein ATG7 in the maintenance of intestinal stem cell integrity. Proc Natl Acad Sci USA. 2020 May 19;117(20):11136–11146. doi: 10.1073/pnas.1917174117
  • Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006 Jun 15;441(7095):880–884. doi: 10.1038/nature04723
  • Moreno-De-Luca A, Helmers SL, Mao H, et al. Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability. J Med Genet. 2011 Feb;48(2):141–144. doi: 10.1136/jmg.2010.082263
  • Aggarwal A, Reichert H, VijayRaghavan K. A locomotor assay reveals deficits in heterozygous Parkinson’s disease model and proprioceptive mutants in adult Drosophila. Proc Natl Acad Sci USA. 2019 Dec 3;116(49):24830–24839. doi: 10.1073/pnas.1807456116
  • Cao M, Wu Y, Ashrafi G, et al. Parkinson sac domain mutation in synaptojanin 1 impairs clathrin uncoating at synapses and triggers dystrophic changes in dopaminergic axons. Neuron. 2017 Feb 22;93(4):882–896 e5. doi: 10.1016/j.neuron.2017.01.019
  • Winslow AR, Chen CW, Corrochano S, et al. α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol. 2010 Sep 20;190(6):1023–1037. doi: 10.1083/jcb.201003122
  • Yi S, Wang L, Ho MS, et al. The autophagy protein Atg9 functions in glia and contributes to parkinsonian symptoms in a drosophila model of Parkinson’s disease. Neural Regen Res. 2024 May;19(5):1150–1155. doi: 10.4103/1673-5374.382259
  • Bhukel A, Beuschel CB, Maglione M, et al. Autophagy within the mushroom body protects from synapse aging in a non-cell autonomous manner. Nat Commun. 2019 Mar 21;10(1):1318. doi: 10.1038/s41467-019-09262-2
  • Kakanj P, Bhide S, Moussian B, et al. Autophagy-mediated plasma membrane removal promotes the formation of epithelial syncytia. Embo J. 2022 Jun 14;41(12):e109992. doi: 10.15252/embj.2021109992
  • Vale-Costa S, Etibor TA, Brás D, et al. ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza a virus inclusions. PLOS Biol. 2023;21(11):e3002290. doi: 10.1371/journal.pbio.3002290
  • Papin L, Lehmann M, Lagisquet J, et al. The autophagy nucleation factor ATG9 forms nanoclusters with the HIV-1 receptor DC-SIGN and regulates early antiviral autophagy in human dendritic cells. Int J Mol Sci. 2023 May 19;24(10):9008. doi: 10.3390/ijms24109008
  • Mailler E, Waheed AA, Park SY, et al. The autophagy protein ATG9A promotes HIV-1 infectivity. Retrovirology. 2019 Jul 3;16(1):18. doi: 10.1186/s12977-019-0480-3
  • Tang HW, Liao HM, Peng WH, et al. Atg9 interacts with dTRAF2/TRAF6 to regulate oxidative stress-induced JNK activation and autophagy induction. Dev Cell. 2013 Dec 9;27(5):489–503. doi: 10.1016/j.devcel.2013.10.017