4,413
Views
68
CrossRef citations to date
0
Altmetric
Review

Mechanisms of toxic cardiomyopathy

Pages 1-9 | Received 11 Jun 2018, Accepted 29 Jun 2018, Published online: 27 Sep 2018

References

  • Elliott P, Andersson B, Arbustini E. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur Heart J. 2007;29:270–276.
  • Ghadri J-R, Wittstein IS, Prasad A, et al. International expert consensus document on takotsubo syndrome (part I): clinical characteristics, diagnostic criteria, and pathophysiology. Eur Heart J. 2018; 39:2032–2046.
  • Pelliccia F, Sinagra G, Elliott P, et al. Takotsubo is not a cardiomyopathy. Int J Cardiol. 2018;254:250–253.
  • Montastruc G, Favreliere S, Sommet A, et al. Drugs and dilated cardiomyopathies: a case/noncase study in the French PharmacoVigilance Database. Br J Clin Pharmacol. 2010;69:287–294.
  • Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 2003; 97:2869–2879.
  • Deidda M, Madonna R, Mango R, et al. Novel insights in pathophysiology of antiblastic drugs-induced cardiotoxicity and cardioprotection. J Cardiovasc Med. 2016;17:e76–e83.
  • McGowan JV, Chung R, Maulik A, et al. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc Drugs Ther. 2017;31:63–75.
  • Mercurio V, Pirozzi F, Lazzarini E, et al. Models of heart failure based on the cardiotoxicity of anticancer drugs. J Card Fail. 2016;22:449–458.
  • Varga ZV, Ferdinandy P, Liaudet P, et al. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol. 2015;309:H1453–H1467.
  • Kankeu C, Clarke K, Passante E, et al. Doxorubicin-induced chronic dilated cardiomyopathy—the apoptosis hypothesis revisited. J Mol Med. 2017;95:239–248.
  • Bloom MW, Hamo CE, Cardinale D, et al. Cancer therapy-related cardiac dysfunction and heart failure part 1: definitions, pathophysiology, risk factors, and imaging. Circ Heart Fail. 2016; 9:e002661.
  • Henriksen PA. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart. 2018;104:971–977. pii: heartjnl-2017-312103.
  • Wojnowski L, Kulle B, Schirmer M, et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005;112:3754–3762.
  • Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–792.
  • Baron KB, Brown JR, Heiss BL, et al. Trastuzumab-induced cardiomyopathy: incidence and associated risk factors in an inner-city population. J Card Fail. 2014;20:555–559.
  • ElZarrad MK, Mukhopadhyay P, Mohan N, et al. Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice. PLoS One. 2013;8:e79543.
  • Rainbolt TK, Saunders JM, Wiseman RL. Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrinol Metab. 2014;25:528–537.
  • Maharsy W, Aries A, Mansour O, et al. Ageing is a risk factor in imatinib mesylate cardiotoxicity. Eur J Heart Fail. 2014;16:367–376.
  • Hasinoff BB, Patel D, O'Hara KA. Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Mol Pharmacol. 2008;74:1722–1728.
  • Kerkela R, Woulfe KC, Durand J-B, et al. Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin Transl Sci. 2009;2:15–25.
  • Gao RY, Mukhopadhyay P, Mohanraj R, et al. Resveratrol attenuates azidothymidine-induced cardiomyopathy by decreasing mitochondrial reactive oxygen species generation in human cardiomyocytes. Mol Med Rep. 2011;4:151–155.
  • Kohler JJ, Cucoranu I, Fields E, et al. Transgenic mitochondrial superoxide dismutase and mitochondrially targeted catalase prevent antiretroviral-induced oxidative stress and cardiomyopathy. Lab Invest. 2009;89:782–790.
  • Lee YH, Goh WW, Ng CK, et al. Integrative toxiproteomics implicates impaired mitochondrial glutathione import as an off-target of troglitazone. J Proteome Res. 2013;12:2933–2945.
  • Nadanaciva S, Dykens JA, Bernal A, et al. Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration. Toxicol Appl Pharmacol. 2007;223:277–287.
  • Vinetti M, Haufroid V, Capron A, et al. Severe acute cardiomyopathy associated with venlafaxine overdose and possible role of CYP2D6 and CYP2C19 polymorphisms. Clin Toxicol. 2011;49:865–869.
  • Haufroid V, Hantson P. CYP2D6 genetic polymorphisms and their relevance for poisoning due to amfetamines, opioid analgesics and antidepressants. Clin Toxicol. 2015;53:501–510.
  • Frustaci A, Russo MA, Morgante E, et al. Oxidative myocardial damage in human cocaine-related cardiomyopathy. Eur J Heart Fail. 2015;17:283–290.
  • Havakuk O, Rezkalla SH, Kloner RA. The cardiovascular effects of cocaine. J Am Coll Cardiol. 2017;70:101–113.
  • Hale SL, Alker KJ, Rezkalla S, et al. Adverse effects of cocaine on cardiovascular dynamics, myocardial blood flow, and coronary artery diameter in an experimental model. Am Heart J. 1989;118:927–933.
  • Pitts WR, Vongpatanasin W, Cigarroa JE, et al. Effects of the intracoronary infusion of cocaine on left ventricular systolic and diastolic function in humans. Circulation. 1998;97:1270–1273.
  • Perreault CL, Hague NL, Ransil BJ, et al. The effects of cocaine on intracellular Ca2+ handling and myofilament Ca2+ responsiveness of ferret ventricular myocardium. Br J Pharmacol. 1990;101:679–685.
  • Arora S, Alfayoumi F, Srinivasan V. Transient left ventricular apical ballooning after cocaine use: is catecholamine cardiotoxicity the pathologic link? Mayo Clin Proc. 2006;81:829–832.
  • Li G, Xiao Y, Zhang L. Cocaine induces apoptosis in fetal rat myocardial cells through the p38 mitogen-activated protein kinase and mitochondrial/cytochrome c pathways. J Pharmacol Exp Ther. 2005;312:112–119.
  • Kovacic P. Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer. Med Hypotheses. 2005;64:350–356.
  • Isabelle M, Vergeade A, Moritz F, et al. NADPH oxidase inhibition prevents cocaine-induced up-regulation of xanthine oxidoreductase and cardiac dysfunction. J Mol Cell Cardiol. 2007;42:326–332.
  • Virmani R, Robinowitz M, Smialek JE, et al. Cardiovascular effects of cocaine: an autopsy study of 40 patients. Am Heart J. 1988;115:1068–1076.
  • Paratz ED, Cunningham NJ, Mac Isaac AI. The cardiac complications of methamphetamines. Heart Lung Circ. 2016;25:325–332.
  • Islam MN, Kuroki H, Hongcheng B, et al. Cardiac lesions and their reversibility after long term administration of methamphetamine. Forensic Sci Int. 1995;75:29–43.
  • Nishida N, Ikeda N, Kudo K, et al. Sudden unexpected death of a methamphetamine abuser with cardiopulmonary abnormalities: a case report. Med Sci Law. 2003;43:267–271.
  • Ito H, Yeo KK, Wijetunga M, et al. A comparison of echocardiographic findings in young adults with cardiomyopathy: with and without a history of methamphetamine abuse. Clin Cardiol. 2009;32:E18– E22.
  • Sutter ME, Gaedigk A, Albertson TE, et al. Polymorphisms in CYP2D6 may predict methamphetamine related heart failure. Clin Toxicol. 2013;51:540–544.
  • Steiner JL, Lang CH. Etiology of alcoholic cardiomyopathy: mitochondria, oxidative stress and apoptosis. Int J Biochem Cell Biol. 2017;89:125–135.
  • Laurent D, Edwards JG. Alcoholic cardiomyopathy: multigenic changes underlie cardiovascular dysfunction. J Cardiol Clin Res. 2014;2:1022.
  • Leibing E, Meyer T. Enzymes and signal pathways in the pathogenesis of alcoholic cardiomyopathy. Herz. 2016;41:478–483.
  • Li SY, Gilbert SA, Li Q, et al. Aldehyde dehydrogenase-2 (ALDH2) ameliorates chronic alcohol ingestion-induced myocardial insulin resistance and endoplasmic reticulum stress. J Mol Cell Cardiol. 2009;47:247–255.
  • Hung CL, Chang SC, Chang SH, et al. Genetic polymorphisms of alcohol metabolizing enzymes and alcohol consumption are associated with asymptomatic cardiac remodeling and subclinical systolic dysfunction in large community-dwelling Asians. Alcohol Alcohol. 2017;52:638–646.
  • Ma H, Yu L, Byra EA, et al. Aldehyde dehydrogenase 2 knockout accentuates ethanol-induced cardiac depression: role of protein phosphatases. J Mol Cell Cardiol. 2010;49:322–329.
  • Husemoen LL, Fenger M, Friedrich N, et al. The association of ADH and ALDH gene variants with alcohol drinking habits and cardiovascular disease risk factors. Alcohol Clin Exp Res. 2008;32:1984–1091.
  • Schröder J, Hamada S, Altiok E, et al. Detection of acute changes in left ventricular function by myocardial deformation analysis after excessive alcohol ingestion. J Am Soc Echocardiogr. 2017;30:235–243.
  • Guzzo-Merello G, Cobo-Marcos M, Gallego-Delgado M, et al. Alcoholic cardiomyopathy. World J Cardiol. 2014;6:771–781.
  • Mirijello A, Tarli C, Vassallo GA, et al. Alcoholic cardiomyopathy: what is known and what is not known. Eur J Intern Med. 2017;43:1–5.
  • Ren J, Wold LE. Mechanisms of alcoholic heart disease. Ther Adv Cardiovasc Dis. 2008;2:497–506.
  • Piano MR, Phillips SA. Alcoholic cardiomyopathy: pathophysiologic insights. Cardiovasc Toxicol. 2014;14:291–308.
  • Jung YS, Lee JS, Min YG, et al. Carbon monoxide-induced cardiomyopathy. Circ J. 2014;78:1437–1444.
  • Cha YS, Kim H, Hwang SO, et al. Incidence and patterns of cardiomyopathy in carbon monoxide-poisoned patients with myocardial injury. Clin Toxicol. 2016;54:481–487.
  • Kjeldsen K, Thomsen HK, Astrup P. Effects of carbon monoxide on myocardium. Ultrastructural changes in rabbits after moderate, chronic exposure. Circ Res. 1974;34:339–348.
  • Cha YS, Kim H, Lee Y, et al. Evaluation of relationship between coronary artery status evaluated by coronary computed tomography angiography and development of cardiomyopathy in carbon monoxide poisoned patients with myocardial injury: a prospective observational study. Clin Toxicol. 2018;56:30–36.
  • Prockop LD, Chichkova RI. Carbon monoxide intoxication: an updated review. J Neurol Sci. 2007;262:122–130.
  • Thom SR. Carbon monoxide-mediated brain lipid peroxidation in the rat. J Appl Physiol. 1990;68:997–1003.
  • Fitzgerald RS, Dehghani GA, Kiihl S. Autonomic control of the cardiovascular system in the cat during hypoxemia. Auton Neurosci. 2013;174:21–30.
  • Takahashi K. Cardiac disturbances due to CO poisoning in experimental animals. II. Changes of the heart excitability due to acute CO poisoning. Tohoku J Exp Med. 1961;74:224–233.
  • Cooper CE, Brown GC. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr. 2008;40:533–539.
  • Lippi G, Rastelli G, Meschi T, et al. Pathophysiology, clinics, diagnosis and treatment of heart involvement in carbon monoxide poisoning. Clin Biochem. 2012;45:1278–1285.
  • Chen KC, McGrath JJ. Response of the isolated heart to carbon monoxide and nitrogen anoxia. Toxicol Appl Pharmacol. 1985;81:363–370.
  • Suner S, Jay G. Carbon monoxide has direct toxicity on the myocardium distinct from effects of hypoxia in an ex vivo rat heart model. Acad Emerg Med. 2008;15:59–65.
  • Meyer G, André L, Kleindienst A, et al. Carbon monoxide increases inducible NOS expression that mediates CO-induced myocardial damage during ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2015;308:H759–H767.
  • Motterlini R, Foresti R. Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am J Physiol, Cell Physiol. 2017;312:C302–C313.
  • Alvarez M, Malécot CO, Gannier F, et al. Antimony-induced cardiomyopathy in guinea-pig and protection by l-carnitine. Br J Pharmacol. 2005;144:17–27.
  • Tirmenstein MA, Plews PI, Walker CV, et al. Antimony-induced oxidative stress and toxicity in cultured cardiac myocytes. Toxicol Appl Pharmacol. 1995;130:41–47.
  • Grice HC, Munro IC, Wiberg GS, et al. The pathology of experimentally induced cobalt cardiomyopathies. A comparison with beer drinkers’ cardiomyopathy. Clin Toxicol.1969;2:273–287.
  • Packer M. Cobalt cardiomyopathy: a critical reappraisal in light of a recent resurgence. Circ Heart Fail. 2016;9:e003604. pii: e003604.
  • Bradberry SM, Wilkinson JM, Ferner RE. Systemic toxicity related to metal hip prostheses. Clin Toxicol. 2014;52:837–847.
  • Prentice JR, Clark MJ, Hoggard N, et al. Metal-on-metal hip prostheses and systemic health: a cross-sectional association study 8 years after implantation. PLoS One. 2013;8:e66186
  • Harrow JA, Das PK, Dhalla NS. Influence of some divalent cations on heart sarcolemmal bound enzymes and calcium binding. Biochem Pharmacol. 1978;27:2605–2609.
  • Kleinfeld M, Stein E. Action of divalent cations on membrane potentials and contractility in rat atrium. Am J Physiol. 1968;215:593–599.
  • Hervouet E, Pecina P, Demont J, et al. Inhibition of cytochrome c oxidase subunit 4 precursor processing by the hypoxia mimic cobalt chloride. Biochem Biophys Res Commun. 2006;344:1086–1093.
  • Clyne N, Hofman-Bang C, Haga Y, et al. Chronic cobalt exposure affects antioxidants and ATP production in rat myocardium. Scand J Clin Lab Invest. 2001;61:609–614.
  • Lewis CP, Demedts M, Nemery B. Indices of oxidative stress in hamster lung following exposure to cobalt(II) ions: in vivo and in vitro studies. Am J Respir Cell Mol Biol. 1991;5:163–169.
  • Hatori N, Pehrsson SK, Clyne N, et al. Acute cobalt exposure and oxygen radical scavengers in the rat myocardium. Biochim Biophys Acta. 1993;1181:257–260.
  • Singer I, Rotenberg D. Mechanisms of lithium action. N Engl J Med. 1973;289:254–260.
  • Abdel-Zaher AO, Abdel-Rahman MM. Lithium chloride-induced cardiovascular changes in rabbits are mediated by adenosine triphosphate-sensitive potassium channels. Pharmacol Res. 1999;39:275–282.
  • Serinken M, Karcioglu O, Korkmaz A. Rarely seen cardiotoxicity of lithium overdose: complete heart block. Int J Cardiol. 2009;132:276–278.
  • Asim K, Selman Y, Suleyman Y, et al. Heart attack in the course of lithium overdose. Iran Red Crescent Med J. 2016;18:e21731.
  • Anantha Narayanan M, Mahfood Haddad T, Bansal O, et al. Acute cardiomyopathy precipitated by lithium: is there a direct toxic effect on cardiac myocytes?. Am J Emerg Med. 2015;33:1330.e1–1335.
  • Kitami M, Oizumi H, Kish SJ, et al. Takotsubo cardiomyopathy associated with lithium intoxication in bipolar disorder: a case report. J Clin Psychopharmacol. 2014;34:410–411.
  • Aichhorn W, Huber R, Stuppaeck C, et al. Cardiomyopathy after long-term treatment with lithium - more than a coincidence? J Psychopharmacol. 2006;20:589–591.
  • Rosero Enríquez ÁS, Ballesteros Prados A, Petcu AS. Cardiomyopathy secondary to long-term treatment with lithium: a case report and literature review. J Clin Psychopharmacol. 2018;38:157–159.
  • Perez AL, Tang WH. Contribution of environmental toxins in the pathogenesis of idiopathic cardiomyopathies. Curr Treat Options Cardiovasc Med. 2015;17:381.
  • Frustaci A, Magnavita N, Chimenti C, et al. Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction. J Am Coll Cardiol. 1999;33:1578–1583.
  • Cupo P. Clinical update on scorpion envenoming. Rev Soc Bras Med Trop. 2015;48:642–649.
  • Abroug F, Souheil E, Ouanes I, et al. Scorpion-related cardiomyopathy: Clinical characteristics, pathophysiology, and treatment. Clin Toxicol. 2015;53:511–518.
  • Nouira S, Elatrous S, Besbes L, et al. Neurohormonal activation in severe scorpion envenomation: correlation with hemodynamics and circulating toxin. Toxicol Appl Pharmacol. 2005;208:111–116.
  • Ouanes-Besbes L, El Atrous S, Nouira S, et al. Direct vs. mediated effects of scorpion venom: an experimental study of the effects of a second challenge with scorpion venom. Intensive Care Med. 2005;31:441–446.
  • Padilla A, Govezensky T, Possani LD, et al. Experimental envenoming of mice with venom from the scorpion Centruroides limpidus limpidus: differences in mortality and symptoms with and without antibody therapy relating to differences in age, sex and strain of mouse. Toxicon. 2003;41:959–965.
  • Quintero-Hernández V, Jiménez-Vargas JM, Gurrola GB, et al. Scorpion venom components that affect ion-channels function. Toxicon. 2013;76:328–342.
  • Abroug F, Ouanes I, Maatouk M, et al. Inverted takotsubo syndrome in Androctonus australis scorpion envenomation. Clin Toxicol. 2018;56:381–383.
  • Madias JE. Scorpion envenomation cardiomyopathy: a promising model for takotsubo syndrome. Clin Toxicol. 2015;53:787.
  • Madias JE. Voltage attenuation of the electrocardiogram QRS complexes in a patient with “scorpion envenomation”-induced takotsubo syndrome. Am J Emerg Med. 2015;33:838.
  • Miranda CH, Braggion-Santos MF, Schmidt A, et al. Evolution of the electrocardiogram QRS complexes voltage in scorpion envenomation-induced takotsubo syndrome. Am J Emerg Med. 2015;33:837–838.
  • Miranda CH, Braggion-Santos MF, Schmidt A, et al. The first description of cardiac magnetic resonance findings in a severe scorpion envenomation: Is it a stress-induced (takotsubo) cardiomyopathy like? Am J Emerg Med. 2015;33:862.e5–867.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.