1,870
Views
6
CrossRef citations to date
0
Altmetric
Basic Research

Modest and variable efficacy of pre-exposure hydroxocobalamin and dicobalt edetate in a porcine model of acute cyanide salt poisoning

, , , , , , , , , & ORCID Icon show all
Pages 190-200 | Received 08 Dec 2018, Accepted 27 May 2019, Published online: 07 Aug 2019

References

  • Kales SN, Christiani DC. Acute chemical emergencies. N Engl J Med. 2004;350:800–808.
  • Pita R. Cyanide in chemical warfare and terrorism. In: Hall AH, Isom GE, Rockwood GA, editors. Toxicology of cyanides and cyanogens experimental, applied and clinical aspects. Chichester UK: John Wiley & Sons; 2016. p. 195–208.
  • Organisation for the Prohibition of Chemical Weapons. Fact Sheet 4. What is a Chemical Weapon? The Hague, OPCW; 2018. Accessed 24 JUNE 2019. https://www.opcw.org/sites/default/files/documents/publications/fact_sheets/04.pdf.
  • Baud FJ. Cyanide: critical issues in diagnosis and treatment. Hum Exp Toxicol. 2007;26:191–201.
  • Nelson L. Acute cyanide toxicity: mechanisms and manifestations. J Emerg Nurs. 2006;32:S8–S11.
  • Streitz MJ, Bebarta VS, Borys DJ, et al. Patterns of cyanide antidote use since regulatory approval of hydroxocobalamin in the United States. Am J Ther. 2014;21:244–249.
  • Thompson JP, Marrs TC. Hydroxocobalamin in cyanide poisoning. Clin Toxicol. 2012;50:875–885.
  • Borron SW, Baud FJ. Antidotes for acute cyanide poisoning. Curr Pharm Biotechnol. 2012;13:1940–1948.
  • Reade MC, Davies SR, Morley PT, et al. Review article: management of cyanide poisoning. Emerg Med Australas. 2012;24:225–238.
  • Marrs TC, Thompson JP. The efficacy and adverse effects of dicobalt edetate in cyanide poisoning. Clin Toxicol. 2016;54:609–614.
  • Paulet G, editor. L’Intoxication cyanhydrique et son traitement. Paris: Masson SA; 1960.
  • EMA. EPAR Scientific discussion. Cyanokit; 2007. [cited 2019 Jun 20]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000806/WC500036364.pdf.
  • Murray DB, Eddleston M, Thomas S, et al. Rapid and complete bioavailability of antidotes for organophosphorus nerve agent and cyanide poisoning in minipigs after intraosseous administration. Ann Emerg Med. 2012;60:424–430.
  • Forsyth JC, Mueller PD, Becker CE, et al. Hydroxocobalamin as a cyanide antidote: safety, efficacy and pharmacokinetics in heavily smoking normal volunteers. J Toxicol Clin Toxicol. 1993;31:277–294.
  • Chan A, Crankshaw DL, Monteil A, et al. The combination of cobinamide and sulfanegen is highly effective in mouse models of cyanide poisoning. Clin Toxicol. 2011;49:366–373.
  • Brenner M, Kim JG, Lee J, et al. Sulfanegen sodium treatment in a rabbit model of sub-lethal cyanide toxicity. Toxicol Appl Pharmacol. 2010;248:269–276.
  • Borron SW, Stonerook M, Reid F. Efficacy of hydroxocobalamin for the treatment of acute cyanide poisoning in adult beagle dogs. Clin Toxicol. 2006;44:5–15.
  • Bebarta VS, Tanen DA, Lairet J, et al. Hydroxocobalamin and sodium thiosulfate versus sodium nitrite and sodium thiosulfate in the treatment of acute cyanide toxicity in a swine (Sus scrofa) model. Ann Emerg Med. 2010;55:345–351.
  • Bebarta VS, Brittain M, Chan A, et al. Sodium nitrite and sodium thiosulfate are effective against acute cyanide poisoning when administered by intramuscular injection. Ann Emerg Med. 2017;69:718–725.e714.
  • McAnulty PA, Dayan AD, Ganderup N-C, et al. The minipig in biomedical research. Boca Raton: CRC Press; 2011.
  • Forster R, Bode G, Ellegaard L, et al. The RETHINK project-minipigs as models for the toxicity testing of new medicines and chemicals: an impact assessment. J Pharmacol Toxicol Methods. 2010;62:158–159.
  • Bebarta VS, Tanen DA, Boudreau S, et al. Intravenous cobinamide versus hydroxocobalamin for acute treatment of severe cyanide poisoning in a swine (Sus scrofa) model. Ann Emerg Med. 2014;64:612–619.
  • Bebarta VS, Pitotti RL, Dixon PS, et al. Hydroxocobalamin and epinephrine both improve survival in a swine model of cyanide-induced cardiac arrest. Ann Emerg Med. 2012;60:415–422.
  • Belani KG, Singh H, Beebe DS, et al. Cyanide toxicity in juvenile pigs and its reversal by a new prodrug, sulfanegen sodium. Anesth Analg. 2012;114:956–961.
  • International Programme on Chemical Safety (IPCS). Cyanides. Geneva: World Health Organization; 1997.
  • Eddleston M, Fabresse N, Thompson A, et al. Anti-colchicine Fab fragments prevent lethal colchicine toxicity in a porcine model: a pharmacokinetic and clinical study. Clin Toxicol. 2018;56:773–781.
  • MHRA. Dicobalt Edetate Injection 300mg. electronic Medicines Compendium, MHRA; 2012. Accessed 24 JUNE 2019. https://www.medicines.org.uk/emc/product/3730/smpc
  • British National Formulary, Number 72 (September 2016). London: British Medical Association and Royal Pharmaceutical Society of Great Britain; 2016.
  • Astier A, Baud FJ. Simultaneous determination of hydroxocobalamin and its cyanide complex cyanocobalamin in human plasma by high-performance liquid chromatography. Application to pharmacokinetic studies after high-dose hydroxocobalamin as an antidote for severe cyanide poisoning. J Chromatogr B, Biomed Appl. 1995;667:129–135.
  • Chaissaigne H, Lobinski R. Determination of cobalamins and cobinamides by microbore reversed-phase HPLC with spectrophotometric, ion-spray ionization MS and inductively coupled plasma MS detection. Analytica Chim Acta. 1998;359:227–235.
  • Tracqui A, Raul JS, Geraut A, et al. Determination of blood cyanide by HPLC-MS. J Anal Toxicol. 2002;26:144–148.
  • Lacroix C, Saussereau E, Boulanger F, et al. Online liquid chromatography-tandem mass spectrometry cyanide determination in blood. J Anal Toxicol. 2011;35:143–147.
  • Hill SL, Thomas SH, Flecknell PA, et al. Rapid and equivalent systemic bioavailability of the antidotes HI-6 and dicobalt edetate via the intraosseous and intravenous routes. Emerg Med J. 2015;32:626–631.
  • MacLennan L, Moiemen N. Management of cyanide toxicity in patients with burns. Burns. 2015;41:18–24.
  • Mintegi S, Clerigue N, Tipo V, et al. Pediatric cyanide poisoning by fire smoke inhalation: a European expert consensus. Toxicology surveillance system of the intoxications working group of the Spanish society of paediatric emergencies. Pediatr Emerg Care. 2013;29:1234–1240.
  • Hamad E, Babu K, Bebarta VS. Case files of the University of Massachusetts Toxicology Fellowship: does this smoke inhalation victim require treatment with cyanide antidote? J Med Toxicol. 2016;12:192–198.
  • Sidell FR. Nerve agents. In: Sidell FR, Takafuji ET, Franz DR, editors. Medical aspects of chemical and biological warfare. Washington DC: Borden Institute, Walter Reed Army Medical Center; 2006. p. 129–179.
  • Bebarta VS, Pitotti RL, Dixon P, et al. Hydroxocobalamin versus sodium thiosulfate for the treatment of acute cyanide toxicity in a swine (Sus scrofa) model. Ann Emerg Med. 2012;59:532–539.
  • Winek CL, Fusia E, Collom WD, et al. Cyanide poisoning as a mode of suicide. Forensic Sci. 1978;11:51–55.
  • Anseeuw K, Delvau N, Burillo-Putze G, et al. Cyanide poisoning by fire smoke inhalation: a European expert consensus. Eur J Emerg Med. 2013;20:2–9.
  • Erdman AR. Is hydroxocobalamin safe and effective for smoke inhalation? Searching for guidance in the haze. Ann Emerg Med. 2007;49:814–816.
  • Borron SW, Baud FJ, Barriot P, et al. Prospective study of hydroxocobalamin for acute cyanide poisoning in smoke inhalation. Ann Emerg Med. 2007;49:794–801.
  • Nguyen L, Afshari A, Kahn SA, et al. Utility and outcomes of hydroxocobalamin use in smoke inhalation patients. Burns. 2017;43:107–113.
  • Petrikovics I, Baskin SI, Beigel KM, et al. Nano-intercalated rhodanese in cyanide antagonism. Nanotoxicology. 2010;4:247–254.
  • Evans CL. Cobalt compounds as antidotes for hydrocyanic acid. Br J Pharmacol Chemother. 1964;23:455–475.