356
Views
2
CrossRef citations to date
0
Altmetric
Basic Research

Evaluation of aqueous dimethyl trisulfide as an antidote to a highly lethal cyanide poisoning in a large swine model

, , , , , , , , ORCID Icon, , & ORCID Icon show all
Pages 95-101 | Received 28 Jan 2021, Accepted 23 May 2021, Published online: 18 Jun 2021

References

  • Dzombak DA, Ghosh RS, Wong-Chong GM. Cyanide in water and soil: chemistry, risk, and management. Boca Raton: CTC Press; 2005.
  • Bebarta VS, Pitotti RL, Boudreau S, et al. Intraosseous versus intravenous infusion of hydroxocobalamin for the treatment of acute severe cyanide toxicity in a Swine model. Acad Emerg Med. 2014;21(11):1203–1211.
  • Bebarta VS, Pitotti RL, Dixon P, et al. Hydroxocobalamin versus sodium thiosulfate for the treatment of acute cyanide toxicity in a swine (Sus scrofa) model. Ann Emerg Med. 2012;59(6):532–539.
  • Hendry-Hofer TB, Ng PC, Witeof AE, et al. A review on ingested cyanide: risks, clinical presentation, diagnostics, and treatment challenges. J Med Toxicol. 2019;15(2):128–133.
  • Barnes T. Potassium cyanide sent to Japanese newspapers, food and drug companies under names of ‘doomsday cult’ leaders. The Independent. 2019. https://www.independent.co.uk/news/world/asia/japan-potassium-cyanide-letter-threats-aum-shinrikyo-shoko-asahara-newspapers-drug-food-companies-a8752591.html.
  • Krakow M. Cyanide from a steel plant trickled into Lake Michigan for days before the public was notified. 2019. [cited 2020 Nov 15]. https://www.washingtonpost.com/climate-environment/2019/08/19/cyanide-steel-plant-trickled-into-lake-michigan-days-before-public-was-notified/.
  • Bebarta VS, Tanen DA, Boudreau S, et al. Intravenous cobinamide versus hydroxocobalamin for acute treatment of severe cyanide poisoning in a swine (Sus scrofa) model. Ann Emerg Med. 2014;64(6):612–619.
  • Thompson A, Dunn M, Jefferson RD, et al. Modest and variable efficacy of pre-exposure hydroxocobalamin and dicobalt edetate in a porcine model of acute cyanide salt poisoning. Clin Toxicol. 2020;58(3):190–200.
  • DeLeon SM, Downey JD, Hildenberger DM, et al. DMTS is an effective treatment in both inhalation and injection models for cyanide poisoning using unanesthetized mice. Clin Toxicol. 2018;56(5):332–341.
  • Hendry-Hofer TB, Witeof AE, Lippner DS, et al. Intramuscular dimethyl trisulfide: efficacy in a large swine model of acute severe cyanide toxicity. Clin Toxicol. 2019;57(4):265–270.
  • Rice NC, Rauscher NA, Wilkins WL, et al. Behavioural and physiological assessments of dimethyl trisulfide treatment for acute oral sodium cyanide poisoning. Basic Clin Pharmacol Toxicol. 2019;125(3):289–303.
  • Lippner DS, Rhoomes MO, Winborn JN, et al. Novel aqueous dimethyl trisulfide formulation is effective at low doses against cyanide toxicity in non-anesthetized mice and rats. Clin Toxicol. 2021;In press.
  • Rockwood GA, Thompson DE, Petrikovics I. Dimethyl trisulfide: a novel cyanide countermeasure. Toxicol Ind Health. 2016;32(12):2009–2016.
  • Belani KG, Singh H, Beebe DS, et al. Cyanide toxicity in juvenile pigs and its reversal by a new prodrug, sulfanegen sodium. Anesth Analg. 2012;114(5):956–961.
  • Baskin SI, Porter DW, Rockwood GA, et al. In vitro and in vivo comparison of sulfur donors as antidotes to acute cyanide intoxication. J Appl Toxicol. 1999;19(3):173–183.
  • Manandhar E, Maslamani N, Petrikovics I, et al. Determination of dimethyl trisulfide in rabbit blood using stir bar sorptive extraction gas chromatography-mass spectrometry. J Chromatogr A. 2016;1461:10–17.
  • Kiss L, Bocsik A, Walter FR, et al. From the cover: in vitro and in vivo blood-brain barrier penetration studies with the novel cyanide antidote candidate dimethyl trisulfide in mice. Toxicol Sci. 2017;160(2):398–407.
  • Petrikovics IK, Chou CE, Ebrahimpour A, et al. Antidotal efficacies of the cyanide antidote candidate dimethyl trisulfide alone and in combination with cobinamide derivatives. Toxicol Mech Methods. 2019;29(6):438–444.
  • Warnakula IK, Ebrahimpour A, Li SY, et al. Evaluation of the long-term storage stability of the cyanide antidote: dimethyl trisulfide and degradation product identification. ACS Omega. 2020;5(42):27171–27179.
  • Helke KL, Swindle MM. Animal models of toxicology testing: the role of pigs. Expert Opin Drug Metab Toxicol. 2013;9(2):127–139.
  • Swindle MM. The development of swine models in drug discovery and development. Future Med Chem. 2012;4(14):1771–1772.
  • Swindle MM, Makin A, Herron AJ, et al. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49(2):344–356.
  • Babin M, Reid FM, Jett DA, et al. Animal models for testing antidotes against an oral cyanide challenge. Bethesda (MD): NIH/NINDS; 2016.
  • Hendry-Hofer TB, Witeof AE, Ng PC, et al. Intramuscular sodium tetrathionate as an antidote in a clinically relevant swine model of acute cyanide toxicity. Clin Toxicol. 2020;58(1):29–35.
  • Ng PC, Hendry-Hofer TB, Garrett N, et al. Intramuscular cobinamide versus saline for treatment of severe hydrogen sulfide toxicity in swine. Clinical Toxicology. 2019;57(3):189–196.
  • Bhadra S, Bebarta VS, Hendry-Hofer TB, et al. Analysis of the soil fumigant, dimethyl disulfide, in swine blood by dynamic headspace gas chromatography–mass spectroscopy. J Chromatogr A. 2021; 1638:461856.
  • Honkanen HP, Mustonen C, Herajärvi J, et al. Remote ischemic preconditioning in spinal cord protection: a surviving porcine study. Semin Thorac Cardiovasc Surg. 2020;32(4):788–796.
  • Renggaman A, Choi HL, Sudiarto S, et al. Development of pig welfare assessment protocol integrating animal-, environment-, and management-based measures. J Anim Sci Technol. 2015;57:1.
  • Rutherford KM, Donald RD, Lawrence AB, et al. Qualitative Behavioural Assessment of emotionality in pigs. Appl Anim Behav Sci. 2012;139(3-4):218–224.
  • Tawil R. Methods for muscle sampling. 2015. [cited 2020 Sep 18]. https://www.fda.gov/media/92021/download.
  • Meridian. CYANOKIT package insert. 2018.
  • Hope P. Nithiodote package insert. 2017.
  • Hill RL, Wilmot JG, Belluscio BA, et al. Comparison of drug delivery with autoinjector versus manual prefilled syringe and between three different autoinjector devices administered in pig thigh. Med Dev. 2016;9:257–266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.