17
Views
0
CrossRef citations to date
0
Altmetric
Basic Research

The influence of the model pesticides parathion and paraoxon on human cytochrome P450 and associated oxygenases in HepaRG cells

, , , &
Received 23 Feb 2024, Accepted 24 May 2024, Published online: 14 Jun 2024

References

  • Worek F, Wille T, Koller M, et al. Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Arch Toxicol. 2016;90(9):2131–2145. doi: 10.1007/s00204-016-1772-1.
  • Costa LG. Organophosphorus compounds at 80: some old and new issues. Toxicol Sci. 2018;162(1):24–35. doi: 10.1093/toxsci/kfx266.
  • Kaur S, Chowdhary S, Kumar D, et al. Organophosphorus and carbamate pesticides: molecular toxicology and laboratory testing. Clin Chim Acta. 2023;551:117584. doi: 10.1016/j.cca.2023.117584.
  • Holmstedt B. Pharmacology of organophosphorus cholinesterase inhibitors. Pharmacol Rev. 1959;11:567–688.
  • Eyer P. The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol Rev. 2003;22(3):165–190. doi: 10.2165/00139709-200322030-00004.
  • Sidell FR, Borak J. Chemical warfare agents: II. Nerve agents. Ann Emerg Med. 1992;21(7):865–871. doi: 10.1016/s0196-0644(05)81036-4.
  • Tafuri J, Roberts J. Organophosphate poisoning. Ann Emerg Med. 1987;16(2):193–202. doi: 10.1016/s0196-0644(87)80015-x.
  • Hodgson E, Rose RL. Human metabolism and metabolic interactions of deployment-related chemicals. Drug Metab Rev. 2005;37(1):1–39. doi: 10.1081/dmr-200046955.
  • Jan Y-H, Richardson JR, Baker AA, et al. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450-mediated metabolism with menadione. Ann N Y Acad Sci. 2016;1378(1):80–86.
  • Mutch E, Daly AK, Leathart JBS, et al. Do multiple cytochrome P450 isoforms contribute to parathion metabolism in man? Arch Toxicol. 2003;77(6):313–320. doi: 10.1007/s00204-003-0452-0.
  • Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev. 1997;29(1-2):413–580. doi: 10.3109/03602539709037591.
  • Guengerich FP. Roles of cytochrome P450 enzymes in pharmacology and toxicology: past, present, and future. Adv Pharmacol. 2022;95:1–47. doi: 10.1016/bs.apha.2021.12.001.
  • Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–141. doi: 10.1016/j.pharmthera.2012.12.007.
  • Johnston G. The study of interactive effects of pollutants: a biomarker approach. Sci Total Environ. 1995;171:205–212.
  • Abass K, Turpeinen M, Pelkonen O. An evaluation of the cytochrome P450 inhibition potential of selected pesticides in human hepatic microsomes. J Environ Sci Health B. 2009;44(6):553–563. doi: 10.1080/03601230902997766.
  • Abass K, Pelkonen O. The inhibition of major human hepatic cytochrome P450 enzymes by 18 pesticides: comparison of the N-in-one and single substrate approaches. Toxicol in Vitro. 2013;27(5):1584–1588. doi: 10.1016/j.tiv.2012.05.003.
  • Halpert J, Neal RA. Inactivation of rat liver cytochrome P-450 by the suicide substrates parathion and chloramphenicol. Drug Metab Rev. 1981;12(2):239–259. doi: 10.3109/03602538108994031.
  • Kyle PB, Smith SV, Baker RC, et al. Mass spectrometric detection of CYP450 adducts following oxidative desulfuration of methyl parathion. J Appl Toxicol. 2013;33:644–651.
  • Butler AM, Murray M. Biotransformation of parathion in human liver: participation of CYP3A4 and its inactivation during microsomal parathion oxidation. J Pharmacol Exp Ther. 1997;280(2):966–973.
  • Rudzok S, Schmücking E, Graebsch C, et al. The inducibility of human cytochrome P450 1A by environmental-relevant xenobiotics in the human hepatoma derived cell line HepG2. Environ Toxicol Pharmacol. 2009;28:370–378.
  • Das PC, Cao Y, Rose RL, et al. Enzyme induction and cytotoxicity in human hepatocytes by chlorpyrifos and N,N-diethyl-m-toluamide (DEET). Drug Metabol Drug Interact. 2008;23(3-4):237–260. doi: 10.1515/dmdi.2008.23.3-4.237.
  • Abass K, Lämsä V, Reponen P, et al. Characterization of human cytochrome P450 induction by pesticides. Toxicology. 2012;294(1):17–26. doi: 10.1016/j.tox.2012.01.010.
  • Bernasconi C, Pelkonen O, Andersson TB, et al. Validation of in vitro methods for human cytochrome P450 enzyme induction: outcome of a multi-laboratory study. Toxicol in Vitro. 2019;60:212–228.
  • Sánchez-Santed F, Colomina MT, Herrero Hernández E. Organophosphate pesticide exposure and neurodegeneration. Cortex. 2016;74:417–426. doi: 10.1016/j.cortex.2015.10.003.
  • Leonel Javeres MN, Habib R, Judith Laure N, et al. Chronic exposure to organophosphates pesticides and risk of metabolic disorder in cohort from Pakistan and Cameroon. Int J Environ Res Public Health. 2021;18:2310.
  • Leonel Javeres MN, Raza S, Judith N, et al. Mixture of organophosphates chronic exposure and pancreatic dysregulations in two different population samples. Front Public Health. 2020;8:534902. doi: 10.3389/fpubh.2020.534902.
  • Horn G, Kranawetvogl T, John H, et al. Human HepaRG liver spheroids: cold storage protocol and study on pyridinium oxime-induced hepatotoxicity in vitro. Chem Biol Interact. 2023;369:110285.
  • Horn G, Schäfers C, Thiermann H, et al. Sulfur mustard single-dose exposure triggers senescence in primary human dermal fibroblasts. Arch Toxicol. 2022;96(11):3053–3066. doi: 10.1007/s00204-022-03346-7.
  • Mutch E, Williams FM. Diazinon, chlorpyrifos and parathion are metabolised by multiple cytochromes P450 in human liver. Toxicology. 2006;224(1-2):22–32. doi: 10.1016/j.tox.2006.04.024.
  • Foxenberg RJ, McGarrigle BP, Knaak JB, et al. Human hepatic cytochrome p450-specific metabolism of parathion and chlorpyrifos. Drug Metab Dispos. 2007;35(2):189–193. doi: 10.1124/dmd.106.012427.
  • Ellison CA, Tian Y, Knaak JB, et al. Human hepatic cytochrome P450-specific metabolism of the organophosphorus pesticides methyl parathion and diazinon. Drug Metab Dispos. 2012;40(1):1–5. doi: 10.1124/dmd.111.042572.
  • Eyer F, Meischner V, Kiderlen D, et al. Human parathion poisoning. A toxicokinetic analysis. Toxicol Rev. 2003;22:143–163.
  • Tang J, Rose RL, Chambers JE. Metabolism of organophosphorus and carbamate pesticides. In: Gupta RC, editor. Toxicology of organophosphate and carbamate compounds. Burlington (MA): Academic Press. 2006:127–143.
  • Buratti FM, D'Aniello A, Volpe MT, et al. Malathion bioactivation in the human liver: the contribution of different cytochrome p450 isoforms. Drug Metab Dispos. 2005;33(3):295–302. doi: 10.1124/dmd.104.001693.
  • Taylor LJ, Clark KF, Daoud D, et al. Exposure of American lobster (Homarus americanus) to the pesticide chlorpyrifos results in changes in gene expression. Comp Biochem Physiol Part D Genomics Proteomics. 2021;40:100918.
  • Xing H, Wang Z, Wu H, et al. Assessment of pesticide residues and gene expression in common carp exposed to atrazine and chlorpyrifos: health risk assessments. Ecotoxicol Environ Saf. 2015;113:491–498.
  • Ray A, Liu J, Ayoubi P, et al. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats. Toxicol Appl Pharmacol. 2010;248:144–155.
  • Horn G, Worek F. Suitability of human HepaRG cells and liver spheroids as in vitro model to investigate the bioactivation of the organothiophosphate pesticide parathion. Toxicol In Vitro. 2024;97:105811. doi: 10.1016/j.tiv.2024.105811.
  • Eyer F, Worek F, Eyer P, et al. Obidoxime in acute organophosphate poisoning: 1–Clinical effectiveness. Clin Toxicol. 2009;47:798–806.
  • Isbister GK, Mills K, Friberg LE, et al. Human methyl parathion poisoning. Clin Toxicol. 2007;45:956–960.
  • Eyer F, Eyer P. Enzyme-based assay for quantification of paraoxon in blood of parathion poisoned patients. Hum Exp Toxicol. 1998;17(12):645–651. doi: 10.1177/096032719801701201.
  • Lemaire G, Sousa G D, Rahmani R. A PXR reporter gene assay in a stable cell culture system: CYP3A4 and CYP2B6 induction by pesticides. Biochem Pharmacol. 2004;68:2347–2358.
  • Chen Y, Zhang J, Yang Y, et al. Kynurenine-3-monooxygenase (KMO): from its biological functions to therapeutic effect in diseases progression. J Cell Physiol. 2022;237:4339–4355.
  • Hughes TD, Güner OF, Iradukunda EC, et al. The kynurenine pathway and kynurenine 3-monooxygenase inhibitors. Molecules. 2022;27(1):273. doi: 10.3390/molecules27010273.
  • Chiang JYL. Bile acids: regulation of synthesis. J Lipid Res. 2009;50(10):1955–1966. doi: 10.1194/jlr.R900010-JLR200.
  • De Fabiani E, Mitro N, Anzulovich AC, et al. The negative effects of bile acids and tumor necrosis factor-alpha on the transcription of cholesterol 7alpha-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4: a novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors. J Biol Chem. 2001;276:30708–30716.
  • Camacho-Pérez MR, Covantes-Rosales CE, Toledo-Ibarra GA, et al. Organophosphorus pesticides as modulating substances of inflammation through the cholinergic pathway. Int J Mol Sci. 2022;23:4523.
  • Wang K, Tan W, Liu X, et al. New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed Pharmacother. 2021;137:111326.
  • Lieber CS. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol. 2004;34(1):9–19. doi: 10.1016/j.alcohol.2004.07.008.
  • Harjumäki R, Pridgeon CS, Ingelman-Sundberg M. CYP2E1 in alcoholic and non-alcoholic liver injury. Roles of ROS, reactive intermediates and lipid overload. Int J Mol Sci. 2021;22(15):8221. doi: 10.3390/ijms22158221.
  • Hodgson E, Rose RL, Ryu DY, et al. Pesticide-metabolizing enzymes. Toxicol Lett. 1995;82-83:73–81. doi: 10.1016/0378-4274(95)03469-2.
  • Smyser BP, Hodgson E. Metabolism of phosphorus-containing compounds by pig liver microsomal FAD-containing monooxygenase. Biochem Pharmacol. 1985;34(8):1145–1150. doi: 10.1016/0006-2952(85)90487-3.
  • Hajjar NP, Hodgson E. Flavin adenine dinucleotide-dependent monooxygenase: its role in the sulfoxidation of pesticides in mammals. Science. 1980;209(4461):1134–1136. doi: 10.1126/science.7403873.
  • Zhang J, Chaluvadi MR, Reddy R, et al. Hepatic flavin-containing monooxygenase gene regulation in different mouse inflammation models. Drug Metab Dispos. 2009;37(3):462–468. doi: 10.1124/dmd.108.025338.
  • Medina-Díaz IM, Ponce-Ruiz N, Ramírez-Chávez B, et al. Downregulation of human paraoxonase 1 (PON1) by organophosphate pesticides in HepG2 cells. Environ Toxicol. 2017;32:490–500.
  • Tigges J, Worek F, Thiermann H, et al. Organophosphorus pesticides exhibit compound specific effects in rat precision-cut lung slices (PCLS): mechanisms involved in airway response, cytotoxicity, inflammatory activation and antioxidative defense. Arch Toxicol. 2022;96(1):321–334. doi: 10.1007/s00204-021-03186-x.
  • Simonetti L, Bruque CD, Fernández CS, et al. CYP21A2 mutation update: comprehensive analysis of databases and published genetic variants. Hum Mutat. 2018;39:5–22.
  • Claahsen-van der Grinten HL, Speiser PW, Ahmed SF, et al. Congenital adrenal hyperplasia – current insights in pathophysiology, diagnostics, and management. Endocr Rev. 2022;43(1):91–159. doi: 10.1210/endrev/bnab016.
  • He M, Smith LD, Chang R, et al. The role of sterol-C4-methyl oxidase in epidermal biology. Biochim Biophys Acta. 2014;1841:331–335.
  • Long T, Debler EW, Li X. Structural enzymology of cholesterol biosynthesis and storage. Curr Opin Struct Biol. 2022;74:102369. doi: 10.1016/j.sbi.2022.102369.
  • Durairaj P, Fan L, Machalz D, et al. Functional characterization and mechanistic modeling of the human cytochrome P450 enzyme CYP4A22. FEBS Lett. 2019;593(16):2214–2225. doi: 10.1002/1873-3468.13489.
  • Gao H, Cao Y, Xia H, et al. CYP4A11 is involved in the development of nonalcoholic fatty liver disease via ROS‑induced lipid peroxidation and inflammation. Int J Mol Med. 2020;45(4):1121–1129. doi: 10.3892/ijmm.2020.4479.
  • Anthérieu S, Chesné C, Li R, et al. Stable expression, activity, and inducibility of cytochromes P450 in differentiated HepaRG cells. Drug Metab Dispos. 2010;38(3):516–525. doi: 10.1124/dmd.109.030197.
  • Yokoyama Y, Sasaki Y, Terasaki N, et al. Comparison of drug metabolism and its related hepatotoxic effects in HepaRG, cryopreserved human hepatocytes, and HepG2 cell cultures. Biol Pharm Bull. 2018;41:722–732.
  • Andersson TB, Kanebratt KP, Kenna JG. The HepaRG cell line: a unique in vitro tool for understanding drug metabolism and toxicology in human. Expert Opin Drug Metab Toxicol. 2012;8(7):909–920. doi: 10.1517/17425255.2012.685159.
  • Smallridge RC, Carr FE, Fein HG. Diisopropylfluorophosphate (DFP) reduces serum prolactin, thyrotropin, luteinizing hormone, and growth hormone and increases adrenocorticotropin and corticosterone in rats: involvement of dopaminergic and somatostatinergic as well as cholinergic pathways. Toxicol Appl Pharmacol. 1991;108(2):284–295. doi: 10.1016/0041-008x(91)90118-x.
  • Güven M, Bayram F, Unlühizarci K, et al. Endocrine changes in patients with acute organophosphate poisoning. Hum Exp Toxicol. 1999;18(10):598–601. doi: 10.1191/096032799678839419.
  • Kutty KM, Jocob JC, Hutton CJ, et al. Serum beta-lipoproteins: studies in a patient and in Guinea pigs after the ingestion of organophosphorus compounds. Clin Biochem. 1975;8:379–383.
  • Ryhänen R, Herranen J, Korhonen K, et al. Relationship between serum lipids, lipoproteins and pseudocholinesterase during organophosphate poisoning in rabbits. Int J Biochem. 1984;16:687–690.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.