385
Views
6
CrossRef citations to date
0
Altmetric
Review

Solar thermochemical hydrogen production using metallic oxides

, , , ORCID Icon, &

References

  • Abanades, S., Legal, A., Cordier, A., Peraudeau, G., Flamant, G., and Julbe, A. 2010. Investigation of reactive cerium-based oxides for H2 production by thermochemical two-step water-splitting. J. Mater. Sci. 45: 4163–4173.
  • Alex, L. G., and Abanades, S. 2011. Catalytic investigation of ceria-zirconia solid solutions for solar hydrogen production. Int. J. Hydrogen Energy 36:4739–4748.
  • Balat, M. 2010. Thermochemical routes for biomass-based hydrogen production. Energy Sources Part A 32:1388–1398.
  • Bozoglan, E., Midilli, A., and Hepbasli, A. 2012. Sustainable assessment of solar hydrogen production techniques. Energy 46:85–93.
  • Bulfin, B., Murphy, B. E., Lübben, O., Krasnikov, S. A., and Shvets, I. V. 2012. Finite element method simulations of heat flow in fixed bed solar water splitting redox reactors. Int. J. Hydrogen Energy 37:10028–10035.
  • Charvin, P., Stephane, A., Florent, L., and Gilles, F. 2008. Analysis of solar chemical processes for hydrogen production from water splitting thermochemical cycles. Energ. Convers. Manage. 49:1547–1556.
  • Demirbas, A. 2008. Present and future transportation fuels. Energy Sources Part A. 30:1473–1483.
  • Diver, R. B., Miller, J. E., Allendorf, M. D., Siegel, N. P., and Hogan, R. E. 2008. Solar thermochemical water-splitting ferrite-cycle heat engines. J. Sol. Energ. 130:1–8.
  • Erik, K., Suresh, G. A., Steinfeld, A., Ajay, K. P. 2012. A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: Design, modeling and experimentation. Int. J. Hydrogen Energy 37:16871–16887.
  • Fresno, F., Yoshidab, T., Gokonb, N., Fernández-Saavedrac, R., and Kodamab, T. 2010. Comparative study of the activity of nickel ferrites for solar hydrogen production by two-step thermochemical cycles. Int. J. Hydrogen Energy 35:8503–8510.
  • Funke, H. H., Diaz, H., Liang, X. H., Carney, C. S., Weimer, A. W., and Li, P. 2008. Hydrogen generation by hydrolysis of zinc powder aerosol. Int. J. Hydrogen Energy 33:1127–1134.
  • Gary, J. S., and Massood, R. 2006. Hydrogen from coal gasifieation: An economical path way to a sustainable energy future. Int. J. Coal Geol. 65:173–190.
  • Graf, D., Monnerie, N., Roeb, M., Schmitz, M., and Sattler, C. 2008. Economic comparison of solar hydrogen generation by means of thermochemical cycles and electrolysis. Int. J. Hydrogen Energy 33:4511–4519.
  • Gokon, N., Murayama, H., Umeda, J., Hatamachi, T., and Kodama, T. 2009. Monoclinc zirconia supported Fe3O4 for the two-step water splliting thermochemical cycle at high thermal reduction temperature 1400–1600°C. Int. J. Hydrogen Energy 34:1208–1217.
  • Gokon, N., Kodama, T., Imaizumi, N., Umeda, J., and Seo, T. 2011. Ferrite/zirconia-coated foam device prepared by spin coating for solar demonstration of thermochemical water-splitting. Int. J. Hydrogen Energy 36:2014–2028.
  • Haussener, S., Hirsch, D., Perkins, C., Weimer, A. A., Lewandowski, and Steinfeld, A. 2009. Modeling of a multitube high-temperature solar thermochemical reactor for hydrogen production. J. Solar Energy Eng. 131: 024503–1–5.
  • Hye, H. J., Jung, H. K., Han, G. Y., and Yoon, K. J. 2011. Stepwise production of syngas and hydrogen through methane reforming and water splitting by using a cerium oxide redox system. Int. J. Hydrogen Energy 36:15221–15230.
  • Lv, M., Zhou, J. H., Yang, W. J., and Cen, K. F. 2010. Thermogravimetric analysis of the hydrolysis of zinc particles. Int. J. Hydrogen Energy 35:2617–2621.
  • Martin, R., Martina, N., Säck, J. P., Rietbrock, P., Monnerie, N., Dersch, J., Schmitz, M., and Sattler, C. 2009. Operational strategy of a two-step thermochemical process for solar hydrogen production. Int. J. Hydrogen Energy 34:4537–4545.
  • Midilli, A., and Dincer, I. 2009. Development of some exergetic parameters for PEM fuel cells for measuring environmental impact and sustainability. Int. J. Hydrogen Energy 34:3852–3872.
  • Mohan, S. V., Mohanakrishna, G., and Sarma, P. N. 2008. Integration of acidogenic and methanogenic processes for simultaneous production of biohydrogen and methane from wastewater treatment. Int. J. Hydrogen Energy 33:2156–2166.
  • Müller, R., and Steinfeld, A. 2007. Band-approximated radiative heat transfer analysis of a solar chemical reactor for the thermal dissociation of zinc oxide. Solar Energy 81:1285–1294.
  • Müller, R., Lipinski, W., and Steinfeld, A. 2008. Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO. Appl. Therm. Eng. 28:524–531.
  • Nakamura, T. 1977. Hydrogen production from water utilizing solar heat at high temperatures. Solar Energy 19:467–475.
  • Sack, J. P., Martin, R., Sattler, C., Pitz-Paal, R., and Heinzel, A. 2012. Development of a system model for a hydrogen production process on a solar tower. Solar Energy 86:99–111.
  • Scheffe, J. R., and Steinfeld, A. 2012. Thermodynamic analysis of cerium-based oxides for solar thermochemical fuel production. Energ. Fuel 26:1928–1936.
  • Schunk, L. O., Haeberling, P., Wept, S., Meier, A., and Steinfeld, A. 2008. A receiver-reactor for the solar thermal dissociation of zinc oxide. J. Solar Energy Eng. 130:021009–1–6.
  • Schunk, L. O. 2008. Solar thermal dissociation of zinc oxide-reaction kinetics, reactor design, experimentation, and modeling. Ph.D. Thesis, ETH Zurich, Switzerland.
  • Schunk, L. O., Lipinski, W., and Steinfeld, A. 2009. Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO-experimental validation at 10 kw and scale-up to 1 MW. Chem. Eng. J. 150:502–508.
  • Stamatiou, A., Loutzenhiser, P. G., and Steinfeld, A. 2010. Solar syngas production via H2O/CO2 splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions. Chem. Mater. 22:851–859.
  • Steinfeld, A. 2005. Solar thermochemical production of hydrogen: a review. Solar Energy 78:603–615.
  • Thomas, P., Daniela, G., Wolfram, K., Christian, S., Roebb, M., and Stephan, M. 2009. Prospects of solar thermal hydrogen production processes. Int. J. Hydrogen Energy 34:4256–4267.
  • Tom, M., Christopher, P., Alan, W. W., and Steinfeld, A. 2008. A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energy. Int. J. Therm. Sci. 47:1496–1503.
  • Tom, M. 2009. H2 production by the two-step water-splitting thermochemical cycle based on Zn/Zno redox. Ph.D. Thesis, ETH Zurich, Switzerland.
  • Wang, Z., Roberts, R. R., Naterer, G. F., and Gabriel, K. S. 2012. Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies. Int. J. Hydrogen Energy 51:11828–11840.
  • Wegner, K., Hao, C. L., Rodrigo, J. W., Sotiris, E. P., and Steinfeld, A. 2006. In situ formation and hydrolysis of Zn nanoparticles for H2 production by the two step ZnO/Zn water-splitting thermochemical cycle. Int. J. Hydrogen Energy 31:55–61.
  • William, C. C., Falter, C., Abbott, M., Scipio, D. Furler, P., Sossina, M. H, and Steinfeld, A. 2010. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330:1797–1801.
  • Yolcular, S. 2009. Hydrogen production for energy use in european union countries and turkey. Energy Sources, Part A. 31:1329–1337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.