211
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effect of CO2/N2/CH4 dilution on NO formation in laminar coflow syngas diffusion flames

, , , , &

References

  • Barlow, R. S., A. N. Karpetis, J. H. Frank, and J. Y. Chen. 2001. Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combustion and Flame 127:2102–18. doi:10.1016/S0010-2180(01)00313-3.
  • C L, T., and S. C. Lee. 1982. Flame radiation. Progress in Energy and Combustion Science 8 (1):41–59.
  • Drake, M. C., and R. J. Blint. 1991. Relative importance of nitric oxide formation mechanisms in laminar opposed-flow diffusion flames. Combustion & Flame 83 (1–2):185–203. doi:10.1016/0010-2180(91)90212-T.
  • Giles, D. E., S. Som, and S. K. Aggarwa. 2015. NOx emission characteristics of counterflow syngas diffusion flames with airstream dilution. Fuel 85 (12):1729–42. doi:10.1016/j.fuel.2006.01.027.
  • Li, H., G. Li, and Z. Sun. 2016. Investigation on dilution effect on laminar burning velocity of syngas premixed flames. Energy 112:146–52. doi:10.1016/j.energy.2016.06.015.
  • Liu, F., H. Guo, and G. J. Smallwood. 2001. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: Implications for soot and NOx formation. Combust Flame 125:778–87. doi:10.1016/S0010-2180(00)00241-8.
  • Ma, F., S. Li, J. Zhao, Z. Qi, J. Deng, and N. Naeve. 2012. A fractal-based quasi-dimensional combustion model for SI engines fueled by hydrogen enriched compressed natural gas. Hydrogen Energy 37:9892–901. doi:10.1016/j.ijhydene.2012.03.045.
  • Menon, A. V., S. Y. Lee, and M. J. Linevsky. 2007. Addition of NO2 to a laminar premixed ethylene–Air flame: Effect on soot formation. Proceedings of the Combustion Institute 31 (1):593–601. doi:10.1016/j.proci.2006.08.105.
  • Naik, S. V., and N. M. Laurendeau. 2004. Quantitative laser-induced fluorescence measurements and modeling of nitric oxide in high-pressure (6-15 atm) counterflow diffusion flames. Combust Sciences Technological 176:1809–53. doi:10.1080/00102200490504472.
  • Safer, K., F. Tabet, and A. Ouadha. 2014. Simulation of a syngas counter-flow diffusion flame structure and NO emissions in the pressure range 1–10 atm. Fuel Processing Technology 123:149–58. doi:10.1016/j.fuproc.2013.10.019.
  • Santner, J., F. L. Dryer, and J. Yiguang 2013. The effects of water dilution on hydrogen, syngas, and ethylene flames at elevated pressure. Proceedings of the Combustion Institute 34:719–26
  • Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, and W. C. Gardiner 1995. GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech
  • Smith, T. F., Z. F. Shen, and J. N. Friedman. 1982. Evaluation of coefficients for the weighted sum of gray gases model. Heat Transfer 104:602–08. doi:10.1115/1.3245174.
  • Warnatz, J., U. Maas, and R. W. Dibble. 1996. Combustion. Springer Link Heidelberg 3:216–19.
  • Winter, C. J. 2009. Hydrogen energy-abundant, efficient, clean: A debate over the energy-system-of-change. Hydrogen Energy 34:S1–S52. doi:10.1016/j.ijhydene.2009.05.063.
  • Zheng, M., G. T. Reader, and J. G. Hawley. 2004. Diesel engine exhaust gas recirculation—A review on advanced and novel concepts. Energy Convers Manage 45:883–900. doi:10.1016/S0196-8904(03)00194-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.